Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569423

RESUMEN

Riboflavins are secreted under iron deficiency as a part of the iron acquisition Strategy I, mainly when the external pH is acidic. In plants growing under Fe-deficiency and alkaline conditions, riboflavins have been reported to accumulate inside the roots, with very low or negligible secretion. However, the fact that riboflavins may undergo hydrolysis under alkaline conditions has been so far disregarded. In this paper, we report the presence of riboflavin derivatives and products of their alkaline hydrolysis (lumichrome, lumiflavin and carboxymethylflavin) in nutrient solutions of Cucumis sativus plants grown under different iron regimes (soluble Fe-EDDHA in the nutrient solution, total absence of iron in the nutrient solution, or two different doses of FeSO4 supplied as a foliar spray), either cultivated in slightly acidic (pH 6) or alkaline (pH 8.8, 10 mM bicarbonate) nutrient solutions. The results show that root synthesis and exudation of riboflavins is controlled by shoot iron status, and that exuded riboflavins undergo hydrolysis, especially at alkaline pH, with lumichrome being the main product of hydrolysis.


Asunto(s)
Raíces de Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Hidrólisis , Cucumis sativus/metabolismo , Cucumis sativus/efectos de los fármacos , Deficiencias de Hierro , Riboflavina/metabolismo , Concentración de Iones de Hidrógeno , Estrés Fisiológico/efectos de los fármacos , Hierro/metabolismo , Exudados de Plantas/metabolismo
2.
J Environ Manage ; 344: 118476, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413731

RESUMEN

The accumulation in soil landfills of toxic and persistent lindane, widely used as an insecticide, triggers the risk of leaching with the concomitant contamination of surrounding rivers. Thus, viable remediation to eliminate in situ high concentrations of lindane in soil and water becomes an urgent demand. In this line, a simple and cost-effective composite is proposed, including the use of industrial wastes. It includes reductive and non-reductive base-catalyzed strategies to remove lindane in the media. A mixture of magnesium oxide (MgO) and activated carbon (AC) was selected for that purpose. The use of MgO provides a basic pH. In addition, the specific selected MgO forms double-layered hydroxides in water which permits the total adsorption of the main heavy metals in contaminated soils. AC provides adsorption microsites to hold the lindane and a reductive atmosphere that was increased when combined with the MgO. These properties trigger highly efficient remediation of the composite. It permits a complete elimination of lindane in the solution. In soils doped with lindane and heavy metals, it produces a rapid, complete, and stable elimination of lindane and immobilization of the metals. Finally, the composite tested in lindane-highly contaminated soils permits the "in situ" degradation of nearly 70% of the initial lindane. The proposed strategy opens a promising way to face this environmental issue with a simple, cost-effective composite to degrade lindane and fix heavy metals in contaminated soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Óxido de Magnesio , Hexaclorociclohexano , Carbón Orgánico/química , Contaminantes del Suelo/química , Metales Pesados/química , Suelo/química , Residuos Industriales , Agua
3.
J Agric Food Chem ; 71(30): 11404-11417, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37462422

RESUMEN

Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.


Asunto(s)
Quelantes del Hierro , Hierro , Hierro/metabolismo , Quelantes del Hierro/química , Raíces de Plantas/metabolismo , Concentración de Iones de Hidrógeno
4.
Int J Biol Macromol ; 242(Pt 4): 125115, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257533

RESUMEN

Humic acids are of great interest in many fields; however, they are inhibitors of fermentative processes applied to hydrothermally treated sewage sludge. Hence, the structure and composition of soluble and bound humic acid-like fractions from raw and hydrothermally treated sewage sludge were studied. Lipid, polysaccharide, protein and aromatic fractions were identified, as well as a high nitrogen content (7-10 %) and low solubility in alkaline media. Thus, they do not strictly meet the chemical definition of 'humic acids'. The soluble humic acid-like compounds had more aromatic and less protein content. Thermal hydrolysis of sewage sludge increased their aromaticity to the detriment of protein and polysaccharide fractions, while wet oxidation caused an increase in all structural fractions. Regarding the bound compounds, lipid, polysaccharide and aromatic fractions increased markedly during both treatments, although oxygen produced higher degradation of the protein fraction and, from 1 h, the partial degradation of aromatic compounds and an increase in the C/N atomic ratio (from 5.0 to 18.7 after 2 h). Therefore, hydrothermal treatments have a positive impact on the hydrolysate biodegradability due to the organic matter solubilisation, but also a negative impact linked to the higher solubilisation of the humic acid-like compounds and their structural changes.


Asunto(s)
Sustancias Húmicas , Aguas del Alcantarillado , Sustancias Húmicas/análisis , Aguas del Alcantarillado/química , Proteínas , Fermentación , Lípidos
5.
Front Plant Sci ; 14: 1180688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206971

RESUMEN

Many studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear. Some studies suggest the hypothesis that the interaction of HS with root exudates involves relevant modification of the molecular conformation of humic self-assembled aggregates, including disaggregation, which might be directly involved in the activation of root responses. To investigate this hypothesis, we have prepared two humic acids. A natural humic acid (HA) and a transformed humic acid obtained from the treatment of HA with fungal laccase (HA enz). We have tested the capacity of the two humic acids to affect plant growth (cucumber and Arabidopsis) and complex Cu. Laccase-treatment did not change the molecular size but increased hydrophobicity, molecular compactness and stability, and rigidity of HA enz. Laccase-treatment avoided the ability of HA to promote shoot- and root-growth in cucumber and Arabidopsis. However, it does not modify Cu complexation features. There is no molecular disaggregation upon the interaction of HA and HA enz with plant roots. The results indicate that the interaction with plant roots induced in both HA and laccase-treated HA (HA enz), changes in their structural features that showed higher compactness and rigidity. These events might result from the interaction of HA and HA enz with specific root exudates that can promote intermolecular crosslinking. In summary, the results indicate that the weakly bond stabilized aggregated conformation (supramolecular-like) of HA plays a crucial role in its ability to promote root and shoot growth. The results also indicate the presence of two main types of HS in the rhizosphere corresponding to those non-interacting with plant roots (forming aggregated molecular assemblies) and those produced after interacting with plant root exudates (forming stable macromolecules).

6.
RSC Adv ; 9(44): 25790-25796, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530108

RESUMEN

Phosphate-metal-humic complexes are very relevant in nature due to their crucial role in phosphate availability for plants and microorganisms. Synthetic phosphate-calcium-humic acid (HA) complexes have proven to be efficient sources of available phosphorus for crops. However, the current knowledge about their structure and molecular features is very poor. The structural implications of phosphate interaction with humic binding sites through calcium bridges, in both monocalcium phosphate and dicalcium phosphate is investigated by using molecular modeling, 31P-NMR, 1H-NMR and X-ray diffractometry. The conformational changes in the molecular configuration of the humic acid involved in the interaction resulting from the synthetic process is also studied by using HPSEC and synchronous fluorescence. The results obtained allow us to identify the phosphate type in the crystalline phase that is involved in the interaction of humic acid binding sites and the different forms of calcium phosphate. Synchronous fluorescence also shows that whereas the conformational configuration of the HA binding site is only partially affected in the monocalcium phosphate interaction, it changes in the case of dicalcium phosphate showing simpler molecular arrangements. These changes in the molecular conformation of the binding site in HA in solution may influence the biological activity of the humic acid. On the other hand, HPSEC studies show that the humic-calcium-phosphate interaction is accompanied by increases in the humic acid apparent size distribution. This effect is more intense in the case of monocalcium phosphate system probably due the influence of pH.

7.
J Agric Food Chem ; 66(19): 4787-4799, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29677445

RESUMEN

This study describes the efficiency of a new coating material for preparing granulated potassium-fertilizers with a potassium release to the soil solution sensitive to rainfall intensity. The composite is prepared by reaction of an alkyd-resin with cement in the absence of water. The complementary use of diverse analytical techniques showed that the presence of the cement fraction induced alkyd resin reticulation and gradual cement-resin hardening. Scanning electron microscopy revealed the formation of micro and nanopores within cement-clusters, whose water permeability is affected by the resin reticulation and amphiphilic character. Potassium release was evaluated in water, soil-columns, and in soil-plant trials in pots and open-field. Agronomic results were consistent with potassium release rates obtained in water solution and soil columns. The composite-coated potassium fertilizer was more efficient than the noncoated one in providing plant available potassium, with this effect being dependent on water presence in soil.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Composición de Medicamentos/métodos , Fertilizantes/análisis , Potasio/química , Productos Agrícolas/efectos de los fármacos , Cinética , Potasio/farmacología , Suelo/química , Agua/análisis
8.
ChemSusChem ; 6(7): 1245-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23670945

RESUMEN

Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals.


Asunto(s)
Calcio/química , Fertilizantes , Sustancias Húmicas , Fosfatos/química , Modelos Moleculares , Conformación Molecular
9.
J Sci Food Agric ; 93(2): 293-303, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22740371

RESUMEN

BACKGROUND: Previous studies showed that phosphate can be complexed by humic acids (HA) through stable metal (M) bridges (PMHA). We studied the thermodynamic properties of PMHA and their relationships with the ability of PMHA to both decrease soil P fixation and increase P availability for plants. With this aim, we studied the theoretical stability of PFeHA, PAlHA and PCaHA by molecular modelling methods in relation to the degree and intensity of P absorption in soils and the ability of plants to take up complexed P. RESULTS: A density functional theory (DFT) quantum chemical study enabled us to obtain stable structures for the three PMHA complexes in water solution. The theoretical stabilities (ΔG°) were consistent with that for apparent stability obtained by Scatchard method, PFeHA ≥ PAlHA > PCaHA, though the differences were clearer by the DFT method. Also the reduction of soil P fixation and the release of P from PMHA in the presence of an anionic resin confirmed the stability order of the different PMHA. Plant studies confirmed the ability of diverse plant species to take up both P and metal complexed in PMHA. CONCLUSION: The results indicated the potential efficiency of PMHA-based fertilizers to optimize P fertilization for crops cultivated in soils with high P fixation ability.


Asunto(s)
Aluminio/metabolismo , Calcio/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes , Hierro/metabolismo , Modelos Moleculares , Fósforo/metabolismo , Aluminio/química , Calcio/química , Quelantes/química , Quelantes/metabolismo , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Productos Agrícolas/metabolismo , Fertilizantes/análisis , Sustancias Húmicas/análisis , Hierro/química , Cinética , Fosfatos/química , Fosfatos/metabolismo , Teoría Cuántica , Suelo/química , España , Triticum/crecimiento & desarrollo , Triticum/metabolismo
10.
J Agric Food Chem ; 60(8): 2008-17, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22300509

RESUMEN

A new type of superphosphate (organic complexed superphosphate (CSP)) has been developed by the introduction of organic chelating agents, preferably a humic acid (HA), into the chemical reaction of single superphosphate (SSP) production. This modification yielded a product containing monocalcium phosphate complexed by the chelating organic agent through Ca bridges. Theoretically, the presence of these monocalcium-phosphate-humic complexes (MPHC) inhibits phosphate fixation in soil, thus increasing P fertilizer efficiency. This study investigateed the structural and functional features of CSP fertilizers produced employing diverse HA with different structural features. To this end were used complementary analytical techniques: solid-phase ³¹P NMR, ¹³C NMR, laser-confocal microscopy, X-ray diffraction, and molecular modeling. Finally, the agronomical efficiency of four CSP have been compared with that of SSP as P sources for wheat plants grown in both alkaline and acidic soils in greenhouse pot trials under controlled conditions. The results obtained from the diverse analytical studies showed the formation of MPHC in CSP. Plant-soil studies showed that CSP products were more efficient than SSP in providing available phosphate for wheat plants cultivated in various soils with different physicochemical features. This fact is probably associated with the ability of CSP complexes to inhibit phosphate fixation in soil.


Asunto(s)
Quelantes/química , Quelantes/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Fertilizantes/análisis , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Quelantes/síntesis química , Fenómenos Químicos , Difosfatos/síntesis química , Relación Estructura-Actividad
11.
J Agric Food Chem ; 59(20): 11129-40, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21913649

RESUMEN

The improvement of the nutritional quality of lettuce by its association with arbuscular mycorrhizal fungi (AMF) has been recently reported in a previous study. The aim of this research was to evaluate if the fertilization with three P sources differing in water solubility affects the effectiveness of AMF for improving lettuce growth and nutritional quality. The application of either water-soluble P sources (Hewitt's solution and single superphosphate) or the water-insoluble (WI) fraction of a "rhizosphere-controlled fertilizer" did not exert negative effects on the establishment of the mycorrhizal symbiosis. AMF improved lettuce growth and nutritional quality. Nevertheless, the effect was dependent on the source of P and cultivar. Batavia Rubia Munguía (green cultivar) benefited more than Maravilla de Verano (red cultivar) in terms of mineral nutrients, total soluble sugars, and ascorbate contents. The association of lettuce with AMF resulted in greater quantities of anthocyanins in plants fertilized with WI, carotenoids when plants received either Hewitt's solution or WI, and phenolics regardless of the P fertilizer applied.


Asunto(s)
Agricultura/métodos , Lactuca/microbiología , Micorrizas/fisiología , Valor Nutritivo , Fósforo/administración & dosificación , Fertilizantes , Lactuca/crecimiento & desarrollo , Fósforo/química , Solubilidad , Especificidad de la Especie
12.
J Agric Food Chem ; 59(5): 1900-8, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21254775

RESUMEN

Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.


Asunto(s)
Fertilizantes , Espectroscopía de Resonancia Magnética , Fosfatos/química , Fósforo/administración & dosificación , Desarrollo de la Planta , Suelo/análisis , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Rizosfera , Solubilidad , Triticum/crecimiento & desarrollo , Agua
13.
J Agric Food Chem ; 57(10): 4004-10, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21314194

RESUMEN

This article describes a fast and simple methodology for the extraction and determination of organic acids in tissues and root exudates of maize, lupin, and chickpea by LC/MS/MS. Its main advantage is that it does not require sample prepurification before HPLC analysis or sample derivatization to improve sensibility. The results obtained showed good precision and accuracy, a recovery close to 100%, and no significant matrix effect. Moreover, the sensibility of the method is in general better than that of previously described methodologies, with detection limits between 15 and 900 pg injected.


Asunto(s)
Ácidos Carboxílicos/análisis , Cromatografía Líquida de Alta Presión/métodos , Cicer/química , Lupinus/química , Espectrometría de Masas en Tándem/métodos , Zea mays/química , Ácidos Carboxílicos/aislamiento & purificación , Raíces de Plantas/química , Brotes de la Planta/química
14.
J Agric Food Chem ; 55(19): 7831-9, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17708642

RESUMEN

To optimize the economical cost of each unit of fertilizer applied and to reduce the environmental contamination caused by nutrient losses, the development of highly efficient granulated fertilizers is of great importance. This study proposes a strategy that consists of developing specific fertilizers having nutrient release patterns that are dependent on plant activity in the rhizosphere. This type of fertilizer is named "rhizosphere-controlled fertilizer" (RCF fertilizer). This fertilizer is based on the introduction of an organomineral matrix composed of metal [Mg (Ca is also possible), Zn (Fe and other metals are also possible)]-humic phosphates. The presence of this matrix modifies the nutrient release pattern of the fertilizer. In this way there are two main nutrient fractions: (i) a water-soluble fraction or "starter" fraction and (ii) a "rhizosphere-controlled" fraction insoluble in water but soluble by the action of the rhizospheric acids released by plants and microorganisms. This study shows the chemical and structural characterization of the organomineral matrix, as well as its efficiency in slowing the nutrient release rate of the RCF fertilizer, principally with respect to P and N. It is demonstrated how these properties of the matrix were also reflected in the significant reduction in both ammonia volatilization and N leaching in a pot system consisting of wheat plants cultivated in a calcareous soil and fertilized with a RCF fertilizer.


Asunto(s)
Fertilizantes/análisis , Desarrollo de la Planta , Sustancias Húmicas/análisis , Nitrógeno/análisis , Fosfatos/análisis , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA