Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(9): 094305, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33480721

RESUMEN

In the H2S molecule, the interplay between different core levels can be investigated in great detail in relation to x-ray spectroscopy, which requires a theory for interpretation. Hence, valence and core excitations into the two antibonding molecular orbitals of the H2S molecule have been calculated within a multi-configurational wave function framework. Scanning along the S-H stretching coordinates, we derive potential energy surfaces and transition dipole moments involving the ground state and core and valence excited states. Both valence excitations and the S1s-1 and S2p-1 core excitations show pairs of dissociative and bound electronic states. These pairs of states are nearly degenerate in H2S at the ground state geometry. The close degeneracy together with conical intersections makes H2S an interesting target for x-ray spectroscopy involving ultra-fast dissociation influenced by non-adiabatic transitions and interference. For future investigations with x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS), it is valuable to compare H2S with the water molecule, which exhibits state-selective gating to different vibrational modes [R. C. Couto et al., Nat. Commun. 8, 14165 (2017)] in its well-separated O1s-1 core excited states. The dense manifolds of the S2p-1 core excited states will complicate the analysis of Kα edge RIXS, but dynamical effects could be evaluated through detuning and by comparing with L edge XAS. In L edge RIXS, the dynamical effects will be more pronounced due to the longer lifetime of the S2p-1 core excited states compared to the S1s-1 core excited states.

2.
Nat Commun ; 10(1): 1013, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833573

RESUMEN

Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.

3.
Phys Chem Chem Phys ; 20(21): 14384-14397, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29770402

RESUMEN

In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s-1O4a11. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b-114a11 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.

4.
Sci Rep ; 7: 43891, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266586

RESUMEN

As is well established, the symmetry breaking by isotope substitution in the water molecule results in localisation of the vibrations along one of the two bonds in the ground state. In this study we find that this localisation may be broken in excited electronic states. Contrary to the ground state, the stretching vibrations of HDO are delocalised in the bound core-excited state in spite of the mass difference between hydrogen and deuterium. The reason for this effect can be traced to the narrow "canyon-like" shape of the potential of the state along the symmetric stretching mode, which dominates over the localisation mass-difference effect. In contrast, the localisation of nuclear motion to one of the HDO bonds is preserved in the dissociative core-excited state . The dynamics of the delocalisation of nuclear motion in these core-excited states is studied using resonant inelastic X-ray scattering of the vibrationally excited HDO molecule. The results shed light on the process of a wave function collapse. After core-excitation into the state of HDO the initial wave packet collapses gradually, rather than instantaneously, to a single vibrational eigenstate.

5.
Phys Chem Chem Phys ; 19(30): 19573-19589, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28352891

RESUMEN

In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.

6.
Nat Commun ; 8: 14165, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28106058

RESUMEN

The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...