Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35203040

RESUMEN

A multiway resolution of incomplete chromatographic separation was presented for spectrochromatographic quantification of echinuline in marine-derived fungi Aspergillus chevalieri. Two-dimensional spectrochromatographic maps of calibration, validation and real samples were recorded as a function of time and wavelength using UPLC-PDA instrument under non-optimized chromatographic conditions, which gave rise to co-elution of echinuline and the constituents of sample matrix. A three-way array was obtained by concatenating the data matrices of the spectrochromatographic maps. Then, parallel factor analysis was applied to the multiway array to extract the individual contribution of echinuline in three modes (time, wavelength and sample). While time and wavelength profiles were used for the characterization of echinuline, the sample profile was used for its quantitative determination of the analyte in validation set and in real samples. Validity of the analytical method was evaluated by analyzing the validation set, which consist of test samples, standard addition samples, intra-day and inter-day samples. The proposed multiway analysis method was then applied to marine-derived fungi extracts and echinuline content was found to be 31.9 µg/g based on the average of ten assay results. The assay results provided by PARAFAC model were statistically compared with those obtained by a newly developed classical UPLC method, which ensured the complete separation of echinuline in a run time of nine minutes. The assay results were found to be comparable due to the fact that there was no significant difference between the analysis results (F = 1.63, Fcrit = 3.17; t = 0.69, tcrit = 2.11) at the significance level of 95%). Consequently, the PARAFAC method permitted the accurate determination of echinuline in fungal extracts despite the partial chromatographic separation with a run time of only three minutes.

2.
J Chromatogr Sci ; 60(10): 937-945, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35152300

RESUMEN

A novel chemometric strategy was implemented in the development of a new ultraperformance liquid chromatography method for the quantitative estimation of guaifenesin and pseudoephedrine hydrochloride in a two-component syrup formulation with minimal experimental effort, time and reagent. A full factorial design with three factors was investigated to find optimal working conditions of chromatographic factors (column temperature, flow rate, and 0.1 M H3PO4% in mobile phase) that affect the chromatographic separation. Then, optimum experimental conditions providing adequate separation of the analyzed drug substances within the short runtime were determined. Under optimal experimental conditions, the retention times for guaifenesin and pseudoephedrine hydrochloride were obtained as 0.817 and 1.430 min, respectively. In the optimized RP-UPLC method, chromatographic response was reported as a linear function of concentration between 5.0 and 80.0 µg/mL for guaifenesin and 10.0-90.0 µg/mL for pseudoephedrine hydrochloride. The proposed method was carefully validated and successfully applied to quality control and analysis of a cough syrup preparation containing guaifenesin and pseudoephedrine hydrochloride. Consequently, the proposed reversed-phase ultraperformance liquid chromatography method provided an opportunity to quantify relevant drugs with small amount of reagents and short runtime.


Asunto(s)
Guaifenesina , Guaifenesina/análisis , Seudoefedrina/análisis , Quimiometría , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos
3.
Biomed Chromatogr ; 36(3): e5295, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34877675

RESUMEN

Poor chromatographic resolution is one of the main challenges in chromatographic analysis. Partially separated chromatographic peaks frequently occur, due to the nature of analytes and the demand for fast analysis using high flow rates and shorter columns. Modeling of chromatographic three-way data using suitable chemometric tools enables determining co-eluted peaks without using additional experimental efforts. In this paper, parallel factor analysis (PARAFAC) was applied to chromatographic data for the quantitative resolution of a quaternary mixture at the co-elution condition of acetaminophen, aspirin, ascorbic acid, and guaifenesin in a spectrochromatogram. The spectrochromatograms of the calibration set, validation set, and real samples were arranged as a three-way array. In the next step, the PARAFAC model was implemented to decompose the spectrochromatographic array into trilinear components, corresponding to spectral, chromatographic, and relative concentration profiles of the analytes. The chromatographic and spectral modes were used for the qualitative analysis of components, whereas the analytes in commercial tablets were quantified from their individual profiles in their concentration mode. This study indicated that the application of the PARAFAC model provided a novel strategy for determining overlapping peaks in a chromatogram to perform the analysis of multicomponent mixtures with reduced runtime and without additional efforts.


Asunto(s)
Acetaminofén , Acetaminofén/análisis , Calibración , Cromatografía Líquida de Alta Presión/métodos , Análisis Factorial , Comprimidos
4.
J Chromatogr Sci ; 59(4): 361-370, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33454729

RESUMEN

In the presented work, a three-way analysis of ultra-performance liquid chromatography-photodiode array (UPLC-PDA) dataset was performed by parallel factor analysis (PARAFAC) for quantitatively resolving a ternary mixture containing paracetamol and methocarbamol with indapamide selected as an internal standard in their co-eluted chromatographic conditions. Paracetamol and methocarbamol were quantified in the working range between 3-24 and 5-50 µg/mL by applying PARAFAC decomposition to UPLC-PDA data array obtained under unresolved chromatographic peak conditions. To compare the experimental results provided by co-eluted UPLC-PARAFAC method, an ordinary UPLC method was developed ensuring proper separation of the peaks. The performance of both PARAFAC and ordinary UPLC methods were assessed by quantifying independent test samples, intra- and inter-day samples and spiked samples of pharmaceutical preparations. Then, both methods were applied for quantitative estimation of the related drugs in a commercial pharmaceutical preparation. In this study, PARAFAC method was proved to be a very powerful alternative for the quality control of pharmaceutical preparations containing paracetamol and methocarbamol even in their co-eluted chromatograms with high precision and accuracy in a short chromatographic runtime of 1.2 min.


Asunto(s)
Acetaminofén/análisis , Cromatografía Líquida de Alta Presión/métodos , Análisis Factorial , Metocarbamol/análisis , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
5.
J Food Drug Anal ; 29(1): 76-86, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35696222

RESUMEN

Three-way analysis-based pH-UV-Vis spectroscopy was proposed for quantifying allura red in an energy drink product without the need for chromatographic analysis, and determining the colorant's pKa without using any titration technique. In this study, UV-Vis spectroscopic data matrices were obtained from absorbance measurements at five different pH levels from pH 8 to pH 12 and arranged as a three-way array (wavelength × sample × pH). In the three-way analysis procedure, parallel factor analysis (PARAFAC) was implemented to decompose the three-way array into a set of trilinear components. Each set of three components relates to spectral, pH and relative concentration profiles of allura red and sample matrix in the energy drink. First, UV-Vis spectra of the colorant's acid-base pair and sample's matrix were characterized by using the estimated spectral profile. Then, from the pH profile the pKa value was found to be 11.28 for the related colorant. Finally, allura red in energy drink samples was determined using the estimated concentration curve in the relative concentration profile. In the quantitation procedure, the working concentration range was 0.8-19.2 µg/mL. PARAFAC approach was tested in terms of selectivity, precision, and accuracy of the method. Added recovery results obtained by applying the proposed method to spiked samples were between 101.5% and 103.5%. In the application of the method to the analysis of real samples, successful results were reported. For a comparison, an ultra-performance liquid chromatographic method was developed for the quantitation of the colorant. Compared to the chromatographic method, we observed that PARAFAC model was simple and less expensive without requiring separation.


Asunto(s)
Bebidas Energéticas , Compuestos Azo , Bebidas Energéticas/análisis , Concentración de Iones de Hidrógeno , Análisis Espectral
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118049, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31982659

RESUMEN

A three-way analysis method, parallel factor analysis (PARAFAC) model was applied to the pH-absorbance dataset for the simultaneous determination of paracetamol and its acid-base dissociation constant in presence of excipient interference in a syrup formulation without using chemical pretreatment or chromatographic separation step. The UV spectroscopic data matrices of calibration set, validation and unknown samples were obtained from the absorbance measurements at the five different pH media, considering conjugate acid/base properties of the related drug. Their pH-absorbance data matrices were arranged as a cubic data array (wavelength x sample x pH) (425x52x5). Three-way array of pH-absorbance dataset was decomposed into a trilinear set of spectral, pH and relative concentration profiles of paracetamol and excipients in the commercial syrup using PARAFAC model. In the PARAFAC implementation, paracetamol in the commercial syrup formulation and its pKa value were simultaneously predicted from the relative concentration and pH profiles, respectively. In the method validation step of this study, the performance of PARAFAC model was checked by analyzing the validation samples in terms of selectivity, sensitivity, accuracy and precision of the method. The determination results of paracetamol and its pKa value provided from PARAFAC application were compared to those obtained by a newly developed ultra-performance liquid chromatography (UPLC) method, in terms of simplicity, applicability, interpretability with low cost and short analysis time.


Asunto(s)
Acetaminofén/análisis , Acetaminofén/química , Analgésicos no Narcóticos/análisis , Analgésicos no Narcóticos/química , Cromatografía Líquida de Alta Presión/métodos , Excipientes/química , Cromatografía Liquida , Concentración de Iones de Hidrógeno
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 184: 255-261, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28514719

RESUMEN

In this study, excitation-emission matrix datasets, which have strong overlapping bands, were processed by using four different chemometric calibration algorithms consisting of parallel factor analysis, Tucker3, three-way partial least squares and unfolded partial least squares for the simultaneous quantitative estimation of valsartan and amlodipine besylate in tablets. In analyses, preliminary separation step was not used before the application of parallel factor analysis Tucker3, three-way partial least squares and unfolded partial least squares approaches for the analysis of the related drug substances in samples. Three-way excitation-emission matrix data array was obtained by concatenating excitation-emission matrices of the calibration set, validation set, and commercial tablet samples. The excitation-emission matrix data array was used to get parallel factor analysis, Tucker3, three-way partial least squares and unfolded partial least squares calibrations and to predict the amounts of valsartan and amlodipine besylate in samples. For all the methods, calibration and prediction of valsartan and amlodipine besylate were performed in the working concentration ranges of 0.25-4.50µg/mL. The validity and the performance of all the proposed methods were checked by using the validation parameters. From the analysis results, it was concluded that the described two-way and three-way algorithmic methods were very useful for the simultaneous quantitative resolution and routine analysis of the related drug substances in marketed samples.


Asunto(s)
Amlodipino , Bases de Datos de Compuestos Químicos , Análisis Factorial , Espectrometría de Fluorescencia/métodos , Valsartán , Algoritmos , Amlodipino/análisis , Amlodipino/química , Calibración , Análisis de los Mínimos Cuadrados , Comprimidos , Valsartán/análisis , Valsartán/química
8.
J Sep Sci ; 39(18): 3488-97, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27433792

RESUMEN

Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ciprofloxacina/análisis , Ornidazol/análisis , Calibración , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/normas , Comprimidos/análisis
9.
Talanta ; 148: 144-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26653435

RESUMEN

An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method.


Asunto(s)
Bases de Datos Factuales , Hidroclorotiazida/análisis , Imagenología Tridimensional/métodos , Olmesartán Medoxomilo/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/normas , Bases de Datos Factuales/normas , Análisis Factorial , Análisis de los Mínimos Cuadrados , Comprimidos
10.
Curr Drug Deliv ; 12(2): 192-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25056419

RESUMEN

Drug delivery systems which yield ideal treatments are currently the center of interest for researchers. Niosomes have numerous advantages over other drug delivery systems. However, stability issue is not clear yet and is a serious drawback for niosomes. In this study, the stability of niosomes was the center of interest. Piroxicam which was chosen as the model drug was loaded to niosomes. Niosomes were prepared by thin-film method and different forms (aqueous dispersion, lyophilized powder and lyophilized powder with cryoprotectant) of the original niosome formulation were prepared. The samples were stored either at 5°C±3°C or 25°C±2°C/60% RH±5% RH for 3 months. The drug leakage percent, particle size and distribution, zeta potential, drug release profiles were determined and niosomes were visualized under optic microscope. Niosome formulation provided sustained release of piroxicam. The drug leakage from stored niosomes was observed at the level of 1.56-6.63 %. Individual vesicle images were obtained for all samples by optical microscope. However, particle size of niosomes was increased upon storage. The zeta potential values were neither related to time nor physical form. Drug release profiles and amounts were quite similar for all forms of niosomes and the original formulation but a slight decrease was noticed on drug release amounts by time. This indicates that niosomes become more rigid by time. Although the ideal storage was obtained with lyophilized niosomes at 5±3°C in this study, the usage of suitable cryoprotectant and optimized lyophilization process should be further evaluated.


Asunto(s)
Estabilidad de Medicamentos , Liposomas/química , Piroxicam/química , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Liposomas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...