Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Matrix Biol Plus ; 19-20: 100135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076279

RESUMEN

Cardiac fibrosis is a central pathological feature in several cardiac diseases, but the underlying molecular players are insufficiently understood. The extracellular matrix proteoglycan versican is elevated in heart failure and suggested to be a target for treatment. However, the temporal expression and spatial distribution of versican and the versican cleavage fragment containing the neoepitope DPEAAE in cardiac fibrosis remains to be elucidated. In this study, we have examined versican during cardiac fibrosis development in a murine pressure overload model and in patients with cardiomyopathies. We found that versican, mainly the V1 isoform, was expressed immediately after induction of pressure overload, preceding collagen accumulation, and versican protein levels extended from the perivascular region into the cardiac interstitium. In addition, we found increased production of versican by collagen expressing fibroblasts, and that it was deposited extensively in the fibrotic extracellular matrix during pressure overload. In cardiac cell cultures, the expression of versican was induced by the pro-fibrotic transforming growth factor beta and mechanical stretch. Furthermore, we observed that the proteolytic cleavage of versican (DPEAAE fragment) increased in the late phase of fibrosis development during pressure overload. In patients with hypertrophic and dilated cardiomyopathies, we found elevated levels of versican and a positive correlation between versican and collagen mRNA in the heart, as well as increased cleavage of full-length protein. Taken together, the temporal expression profile and the spatial distribution of both the full-length versican and the DPEAAE fragment observed in this study indicates a role for versican in development of cardiac fibrosis.

2.
Cardiovasc Res ; 119(10): 1915-1927, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216909

RESUMEN

AIMS: Heart failure is a condition with high mortality rates, and there is a lack of therapies that directly target maladaptive changes in the extracellular matrix (ECM), such as fibrosis. We investigated whether the ECM enzyme known as A disintegrin and metalloprotease with thrombospondin motif (ADAMTS) 4 might serve as a therapeutic target in treatment of heart failure and cardiac fibrosis. METHODS AND RESULTS: The effects of pharmacological ADAMTS4 inhibition on cardiac function and fibrosis were examined in rats exposed to cardiac pressure overload. Disease mechanisms affected by the treatment were identified based on changes in the myocardial transcriptome. Following aortic banding, rats receiving an ADAMTS inhibitor, with high inhibitory capacity for ADAMTS4, showed substantially better cardiac function than vehicle-treated rats, including ∼30% reduction in E/e' and left atrial diameter, indicating an improvement in diastolic function. ADAMTS inhibition also resulted in a marked reduction in myocardial collagen content and a down-regulation of transforming growth factor (TGF)-ß target genes. The mechanism for the beneficial effects of ADAMTS inhibition was further studied in cultured human cardiac fibroblasts producing mature ECM. ADAMTS4 caused a 50% increase in the TGF-ß levels in the medium. Simultaneously, ADAMTS4 elicited a not previously known cleavage of TGF-ß-binding proteins, i.e. latent-binding protein of TGF-ß and extra domain A-fibronectin. These effects were abolished by the ADAMTS inhibitor. In failing human hearts, we observed a marked increase in ADAMTS4 expression and cleavage activity. CONCLUSION: Inhibition of ADAMTS4 improves cardiac function and reduces collagen accumulation in rats with cardiac pressure overload, possibly through a not previously known cleavage of molecules that control TGF-ß availability. Targeting ADAMTS4 may serve as a novel strategy in heart failure treatment, in particular, in heart failure with fibrosis and diastolic dysfunction.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Ratas , Humanos , Animales , Desintegrinas/metabolismo , Desintegrinas/farmacología , Miocardio/metabolismo , Insuficiencia Cardíaca/metabolismo , Cardiomiopatías/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Trombospondinas/metabolismo , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Fibrosis
3.
ESC Heart Fail ; 10(2): 858-871, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36444917

RESUMEN

AIMS: Familial hypertrophic cardiomyopathy (HCM) is the most common form of inherited cardiac disease. It is characterized by myocardial hypertrophy and diastolic dysfunction, and can lead to severe heart failure, arrhythmias, and sudden cardiac death. Cardiac fibrosis, defined by excessive accumulation of extracellular matrix (ECM) components, is central to the pathophysiology of HCM. The ECM proteoglycan lumican is increased during heart failure and cardiac fibrosis, including HCM, yet its role in HCM remains unknown. We provide an in-depth assessment of lumican in clinical and experimental HCM. METHODS: Left ventricular (LV) myectomy specimens were collected from patients with hypertrophic obstructive cardiomyopathy (n = 15), and controls from hearts deemed unsuitable for transplantation (n = 8). Hearts were harvested from a mouse model of HCM; Myh6 R403Q mice administered cyclosporine A and wild-type littermates (n = 8-10). LV tissues were analysed for mRNA and protein expression. Patient myectomy or mouse mid-ventricular sections were imaged using confocal microscopy, direct stochastic optical reconstruction microscopy (dSTORM), or electron microscopy. Human foetal cardiac fibroblasts (hfCFBs) were treated with recombinant human lumican (n = 3) and examined using confocal microscopy. RESULTS: Lumican mRNA was increased threefold in HCM patients (P < 0.05) and correlated strongly with expression of collagen I (R2  = 0.60, P < 0.01) and III (R2  = 0.58, P < 0.01). Lumican protein was increased by 40% in patients with HCM (P < 0.01) and correlated with total (R2  = 0.28, P = 0.05) and interstitial (R2  = 0.30, P < 0.05) fibrosis. In mice with HCM, lumican mRNA increased fourfold (P < 0.001), and lumican protein increased 20-fold (P < 0.001) in insoluble ECM lysates. Lumican and fibrillar collagen were located together throughout fibrotic areas in HCM patient tissue, with increased co-localization measured in patients and mice with HCM (patients: +19%, P < 0.01; mice: +13%, P < 0.01). dSTORM super-resolution microscopy was utilized to image interstitial ECM which had yet to undergo overt fibrotic remodelling. In these interstitial areas, collagen I deposits located closer to (-15 nm, P < 0.05), overlapped more frequently with (+7.3%, P < 0.05) and to a larger degree with (+5.6%, P < 0.05) lumican in HCM. Collagen fibrils in such deposits were visualized using electron microscopy. The effect of lumican on collagen fibre formation was demonstrated by adding lumican to hfCFB cultures, resulting in thicker (+53.8 nm, P < 0.001), longer (+345.9 nm, P < 0.001), and fewer (-8.9%, P < 0.001) collagen fibres. CONCLUSIONS: The ECM proteoglycan lumican is increased in HCM and co-localizes with fibrillar collagen throughout areas of fibrosis in HCM. Our data suggest that lumican may promote formation of thicker collagen fibres in HCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Humanos , Animales , Ratones , Lumican/fisiología , Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca/metabolismo , Colágeno Tipo I , Fibrosis , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA