Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36833188

RESUMEN

Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs.


Asunto(s)
Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , ARN Interferente Pequeño/metabolismo , Comunicación Celular , Proteínas/metabolismo
2.
Cell Commun Signal ; 17(1): 146, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727082

RESUMEN

BACKGROUND: Successful establishment of pregnancy hinges on appropriate communication between the embryo and the uterus prior to implantation, but the nature of this communication remains poorly understood. Here, we tested the hypothesis that the endometrium is receptive to embryo-derived signals in the form of RNA. METHODS: We have utilized a non-contact co culture system to simulate the conditions of pre implantation environment of the uterus. We bioorthogonally tagged embryonic RNA and tracked the transferred transcripts to endometrium. Transferred transcripts were separated from endometrial transcripts and sequenced. Changes in endometrial transcripts were quantified using quantitative PCR. RESULTS: We show that three specific transcripts are transferred to endometrial cells. We subsequently demonstrate a role of extracellular vesicles (EVs) in this process, as EVs obtained from cultured trophoblast spheroids incubated with endometrial cells induced down-regulation of all the three identified transcripts in endometrial cells. Finally, we show that EVs/nanoparticles captured from conditioned culture media of viable embryos as opposed to degenerating embryos induce ZNF81 down-regulation in endometrial cells, hinting at the functional importance of this intercellular communication. CONCLUSION: Ultimately, our findings demonstrate the existence of an RNA-based communication which may be of critical importance for the establishment of pregnancy.


Asunto(s)
Endometrio/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Intercambio Materno-Fetal , ARN Mensajero/genética , Trofoblastos/metabolismo , Vesículas Extracelulares/genética , Femenino , Humanos , Intercambio Materno-Fetal/genética , Embarazo , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transcripción Genética , Células Tumorales Cultivadas
3.
Mol Biotechnol ; 58(3): 202-11, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26809356

RESUMEN

Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from -2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from -2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.


Asunto(s)
Pollos/genética , Genes Reporteros , Regiones Promotoras Genéticas , Receptores CXCR4/genética , Animales , Línea Celular Tumoral , Embrión de Pollo , Clonación Molecular , Receptores CXCR4/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
4.
Tumour Biol ; 37(2): 1559-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715265

RESUMEN

Directed cell migration is a crucial mobility phase of cancer stem cells having stemness and tumorigenic characteristics. It is known that CXCR4 plays key roles in the perception of chemotactic gradients throughout the directed migration of CSCs. There are a number of complex signaling pathways and transcription factors that coordinate with CXCR4/CXCL12 axis during directed migration. In this review, we focus on some transcription factors such as Nanog, NF-κB, and Bmi-1 that cooperate with CXCR4/CXCL12 for the maintenance of stemness and induction of metastasis behavior in cancer stem cells.


Asunto(s)
Movimiento Celular/fisiología , FN-kappa B/metabolismo , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores CXCR4/metabolismo , Animales , Humanos , Células Madre Neoplásicas/patología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...