Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Ovarian Res ; 16(1): 122, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370140

RESUMEN

Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model. We show that DNA damage leads to direct interaction of LCK with the HR repair proteins RAD51 and BRCA1 in a kinase dependent manner RAD51 and BRCA1 stabilization. LCK expression is induced and activated in the nucleus in response to DNA damage insult. Disruption of LCK expression attenuates RAD51, BRCA1, and BRCA2 protein expression by hampering there stability and results in inhibition of HR-mediated DNA repair including suppression of RAD51 foci formation, and augmentation of γH2AX foci formation. In contrast LCK overexpression leads to increased RAD51 and BRCA1 expression with a concomitant increase in HR DNA damage repair. Importantly, attenuation of LCK sensitizes HR-proficient eEOC cells to PARP inhibitor in cells and pre-clinical mouse studies. Collectively, our findings identify a novel therapeutic strategy to expand the utility of PARP targeted therapy in HR proficient ovarian cancer.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/genética , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
2.
Cells ; 10(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34440862

RESUMEN

CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.


Asunto(s)
Antígeno Carcinoembrionario/metabolismo , Células Endoteliales/metabolismo , Resistencia a la Insulina , Adipocitos/metabolismo , Animales , Antígeno Carcinoembrionario/genética , Endotelio Vascular/metabolismo , Grasas/metabolismo , Glucosa/metabolismo , Inflamación , Insulina/metabolismo , Resistencia a la Insulina/genética , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
3.
Curr Oncol Rep ; 23(8): 92, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34125319

RESUMEN

PURPOSE OF REVIEW: We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer. RECENT FINDINGS: The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer. Alterations to the bacterial populations in a microbiota, or dysbiosis, have been shown to favor a pro-carcinogenic state through altered immune responses, dysregulated hormone metabolism, and modulation of the cell cycle. Pre-clinical and clinical studies have emerged, demonstrating that specific bacteria or microbial communities may be associated with increased risk for uterine, ovarian, and cervical cancers. Notably, numerous studies have linked a non-Lactobacillus-dominant vaginal microbiota, composed of anaerobic bacteria, with HPV infection, persistence, and development of invasive cervical cancer. Similarly, next-generation high-throughput sequencing techniques have enabled the characterization of unique microbiotas in patients with malignant and benign gynecologic conditions, shedding light on new associations between bacterial species and gynecologic cancers. Harnessing the power of the microbiome for early diagnosis, therapeutic intervention and modulation creates tremendous potential to optimize gynecologic cancer outcomes in the future.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias de los Genitales Femeninos/microbiología , Genitales Femeninos/microbiología , Femenino , Enfermedades Gastrointestinales/microbiología , Tracto Gastrointestinal/microbiología , Neoplasias de los Genitales Femeninos/metabolismo , Neoplasias de los Genitales Femeninos/terapia , Genitales Femeninos/metabolismo , Humanos
4.
Biomolecules ; 11(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918805

RESUMEN

The newly established CD3FLAG-mIR transgenic mouse model on a C57Bl/6 background has a FLAG tag on the mouse Insulin Receptor (mIR), specifically on T cells, as the FLAG-tagged mIR gene was engineered behind CD3 promoter and enhancer. The IR is a chemotactic molecule for insulin and the Flag-tagged mIR T cells in the BL/6-CD3FLAGmIR transgenic mice can migrate into the pancreas, as shown by immunofluorescent staining. While the transgenic mice do not become diabetic, there are phenotypic and metabolic changes in the islets. The transgenic islets become enlarged and disorganized by 15 weeks and those phenotypes continue out to 35 weeks of age. We examined the islets by RT-PCR for cell markers, ER stress markers, beta cell proliferation markers, and cytokines, as well as measuring serum insulin and insulin content in the pancreas at 15, 25, and 35 weeks of age. In transgenic mice, insulin in serum was increased at 15 weeks of age and glucose intolerance developed by 25 weeks of age. Passage of transgenic spleen cells into C57Bl/6 RAG-/- mice resulted in enlarged and disorganized islets with T infiltration by 4 to 5 weeks post-transfer, replicating the transgenic mouse studies. Therefore, migration of non-antigen-specific T cells into islets has ramifications for islet organization and function.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina/patología , Pancreatitis/genética , Receptor de Insulina/genética , Linfocitos T/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Pancreatitis/metabolismo , Pancreatitis/patología , Receptor de Insulina/metabolismo , Linfocitos T/fisiología , Transgenes
5.
J Ovarian Res ; 14(1): 55, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888137

RESUMEN

BACKGROUND: Ovarian cancer is the most fatal gynecologic malignancy in the United States. While chemotherapy is effective in the vast majority of ovarian cancer patients, recurrence and resistance to standard systemic therapy is nearly inevitable. We discovered that activation of the non-receptor tyrosine kinase Lymphocyte Cell-Specific Protein-Tyrosine Kinase (LCK) promoted cisplatin resistance. Here, we hypothesized that treating high grade, platinum resistant endometrioid cancer cells with an LCK inhibitor (LCKi) followed by co-treatment with cisplatin would lead to increased cisplatin efficacy. Our objective was to assess clinical outcomes associated with increased LCK expression, test our hypothesis of utilizing LCKi as pre-treatment followed by co-treatment with cisplatin in platinum resistant ovarian cancer in vitro, and evaluate our findings in vivo to assess LCKi applicability as a therapeutic agent. RESULTS: Kaplan-Meier (KM) plotter data indicated LCK expression is associated with significantly worse median progression-free survival (HR 3.19, p = 0.02), and a trend toward decreased overall survival in endometrioid ovarian tumors with elevated LCK expression (HR 2.45, p = 0.41). In vitro, cisplatin resistant ovarian endometrioid cells treated first with LCKi followed by combination LCKi-cisplatin treatment showed decreased cell viability and increased apoptosis. Immunoblot studies revealed LCKi led to increased expression of phosphorylated H2A histone family X ([Formula: see text]-H2AX), a marker for DNA damage. In vivo results demonstrate treatment with LCKi followed by LCKi-cisplatin led to significantly slowed tumor growth. CONCLUSIONS: We identified a strategy to therapeutically target cisplatin resistant endometrioid ovarian cancer leading to chemosensitization to platinum chemotherapy via treatment with LCKi followed by co-treatment with LCKi-cisplatin.


Asunto(s)
Carcinoma Endometrioide/tratamiento farmacológico , Cisplatino/uso terapéutico , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Animales , Carcinoma Endometrioide/mortalidad , Cisplatino/farmacología , Femenino , Humanos , Ratones , Neoplasias Ováricas/mortalidad , Análisis de Supervivencia
6.
J Immunol ; 206(7): 1443-1453, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33658296

RESUMEN

Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic ß cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Células Secretoras de Insulina/patología , Páncreas/inmunología , Receptor de Insulina/metabolismo , Linfocitos T/inmunología , Adolescente , Adulto , Animales , Movimiento Celular , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Riesgo , Adulto Joven
7.
J Vis Exp ; (165)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33311435

RESUMEN

Endometriosis is a leading cause of pelvic pain and infertility. It is defined by the presence of endometrial tissue in extrauterine locations. The development of novel therapies and diagnostic tools for endometriosis has been limited due in part to challenges in studying the disease. Outside of primates, few mammals menstruate, and none develop spontaneous endometriosis. Rodent models are popular but require artificial induction of endometriosis, with many utilizing either immunocompromised mice or surgically induced disease. Recently, more attention has been given to models involving intraperitoneal injection. We present a murine model of endometriosis that integrates several features of existing endometriosis models into a novel, simplified system that relies on microscopic quantification in lieu of subjective grading. In this model, we perform hormonal stimulation of donor mice, intraperitoneal injection, systematic abdominal survey and tissue harvest, and histologic quantification that can be performed and verified at any time after necropsy. This model requires minimal resources and training; does not require expertise by lab technicians in murine survival surgery or in the identification of gross endometriotic lesions; can be used in immunocompromised, immunocompetent, and/or mutant mice; and reliably creates endometriotic lesions that are histologically consistent with human endometriotic disease.


Asunto(s)
Endometriosis/patología , Animales , Modelos Animales de Enfermedad , Endometriosis/tratamiento farmacológico , Endometriosis/etiología , Endometrio/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inyecciones Intraperitoneales , Ratones Endogámicos C57BL , Programas Informáticos
8.
Ann Transl Med ; 8(14): 905, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32793749

RESUMEN

Epithelial ovarian cancer (EOC) is a leading cause of cancer death in women. Standard of care treatment has remained platinum-containing cytotoxic chemotherapy for over three decades. Among the central challenges in treating ovarian CA are disease recurrence and the development of chemoresistance. Survival is uniformly poor for patients with chemoresistant recurrent disease and effective therapeutic options are limited. As such, delineating the mechanisms of chemoresistance and developing targeted therapies to prevent chemoresistance from occurring are of vital importance to improving survival for patients with EOC. Attempts to characterize mechanisms of chemoresistance have implicated numerous cellular pathways, but a rift remains between pre-clinical findings and translation to improving patient survival. More recently, the interplay among different cell types within the tumor microenvironment has become central to understanding how chemoresistance may develop and may be sustained. An improved understanding of how tumor cell-intrinsic and -extrinsic pathways converge during the development of chemoresistance may improve the likelihood of successful clinical translation. This review focuses on the roles of the EOC tumor microenvironment and tumor cell heterogeneity in the development of chemoresistance. We review recent studies into mechanisms of chemoresistance as they relate to tumor microenvironment and development of novel therapeutic approaches that exploit these mechanisms to prevent or reverse chemoresistance. This review attempts to cast these latest discoveries in a clinical context by summarizing trends in ongoing clinical trials for patients with EOC.

9.
PLoS One ; 15(4): e0228511, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32348309

RESUMEN

OBJECTIVE: To evaluate intraperitoneal (IP) tumor engraftment, metastasis and growth in a pre-clinical murine epithelial ovarian cancer (EOC) model using both transabdominal ultrasound (TAUS) and bioluminescence in vivo imaging system (IVIS). METHODS: Ten female C57Bl/6J mice at six weeks of age were included in this study. Five mice underwent IP injection of 5x106 ID8-luc cells (+ D- luciferin) and the remaining five mice underwent IP injection of ID8-VEGF cells. Monitoring of tumor growth and ascites was performed weekly starting at seven days post-injection until study endpoint. ID8-luc mice were monitored using both TAUS and IVIS, and ID8-VEGF mice underwent TAUS monitoring only. Individual tumor implant dimension and total tumor volume were calculated. Average luminescent intensity was calculated and reported per mouse abdomen. Tumor detection was confirmed by gross evaluation and histopathology. All data are presented as mean +/- standard deviation. RESULTS: Overall, tumors were successfully detected in all ten mice using TAUS and IVIS, and tumor detection correlated with terminal endpoint histology/ H&E staining. For TAUS, the smallest confirmed tumor measurements were at seven days post-injection with mean long axis of 2.23mm and mean tumor volume of 4.17mm3. However, IVIS imaging was able to detect tumor growth at 14 days post-injection. Ascites formation was detected in mice at 21 days post-injection. CONCLUSIONS: TAUS is highly discriminatory for monitoring EOC in pre-clinical murine model, allowing for detection of tumor dimension as small as 2 mm and as early as seven days post-injection compared to IVIS. In addition, TAUS provides relevant information for ascites development and detection of multiple small metastatic tumor implants. TAUS provides an accurate and reliable method to detect and monitor IP EOC growth in mouse xenografts.


Asunto(s)
Abdomen/diagnóstico por imagen , Carcinoma Epitelial de Ovario/diagnóstico por imagen , Carcinoma Epitelial de Ovario/patología , Trasplante de Neoplasias , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/patología , Ultrasonografía , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/metabolismo , Lentivirus/genética , Luciferasas/genética , Ratones Endogámicos C57BL , Necrosis , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Sci Rep ; 9(1): 17663, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776402

RESUMEN

Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Fenotipo , Fosforilación , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Neoplasias de la Mama Triple Negativas/enzimología
11.
Endocr Relat Cancer ; 26(8): 689-698, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31167163

RESUMEN

Breast cancer is the most prevalent malignancy and second leading cause of death in women worldwide, with hormone receptor-positive luminal breast cancers being the most widespread subtype. While these tumors are generally amenable to endocrine therapy, cellular heterogeneity and acquired ability of tumor cells to undergo cell state switching makes these populations difficult to be fully targeted and eradicated through conventional methods. We have leveraged a quality-by-design (QbD) approach that integrates biological responses with predictive mathematical modeling to identify key combinations of commercially available drugs to induce estrogen receptor expression for therapeutic targeting. This technology utilizes a high level of automation through a custom-built platform to reduce bias as well as design-of-experiments methodology to minimize the experimental iterations required. Utilizing this approach, we identified a combination of clinical compounds, each at concentrations well below their efficacious dose, able to induce the expression of estrogen receptor alpha (ESR1) in hormone-positive breast cancer cells. Induction of ESR1 in luminal cells leads to chemosensitization. These findings provide proof of concept for the utility of the QbD strategy and identify a unique drug cocktail able to sensitize breast cancer cells to tamoxifen.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Everolimus/administración & dosificación , Femenino , Humanos , Ácidos Hidroxámicos/administración & dosificación , Indazoles/administración & dosificación , Células MCF-7 , Paclitaxel/administración & dosificación , Sulfonamidas/administración & dosificación , Tamoxifeno/análogos & derivados , Células Tumorales Cultivadas
12.
J Lipid Res ; 57(12): 2163-2175, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27777319

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.


Asunto(s)
Adipocitos/metabolismo , Antígeno Carcinoembrionario/fisiología , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Fibrosis , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BL , Niacina/farmacología , Obesidad/etiología , Obesidad/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-26284027

RESUMEN

CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue (WAT), we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While HF diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type (WT) mice. Histological examination revealed less expansion of adipocytes in L-CC1 than WT by HF intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures, and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to HF intake in L-CC1 than WT mice. Unlike WT, HF diet did not activate TGF-ß in WAT of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, HF diet caused relatively less collagen deposition in L-CC1 than WT mice, as shown by Trichrome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against HF diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA