Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 10(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34440862

RESUMEN

CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.


Asunto(s)
Antígeno Carcinoembrionario/metabolismo , Células Endoteliales/metabolismo , Resistencia a la Insulina , Adipocitos/metabolismo , Animales , Antígeno Carcinoembrionario/genética , Endotelio Vascular/metabolismo , Grasas/metabolismo , Glucosa/metabolismo , Inflamación , Insulina/metabolismo , Resistencia a la Insulina/genética , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
2.
J Vis Exp ; (165)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33311435

RESUMEN

Endometriosis is a leading cause of pelvic pain and infertility. It is defined by the presence of endometrial tissue in extrauterine locations. The development of novel therapies and diagnostic tools for endometriosis has been limited due in part to challenges in studying the disease. Outside of primates, few mammals menstruate, and none develop spontaneous endometriosis. Rodent models are popular but require artificial induction of endometriosis, with many utilizing either immunocompromised mice or surgically induced disease. Recently, more attention has been given to models involving intraperitoneal injection. We present a murine model of endometriosis that integrates several features of existing endometriosis models into a novel, simplified system that relies on microscopic quantification in lieu of subjective grading. In this model, we perform hormonal stimulation of donor mice, intraperitoneal injection, systematic abdominal survey and tissue harvest, and histologic quantification that can be performed and verified at any time after necropsy. This model requires minimal resources and training; does not require expertise by lab technicians in murine survival surgery or in the identification of gross endometriotic lesions; can be used in immunocompromised, immunocompetent, and/or mutant mice; and reliably creates endometriotic lesions that are histologically consistent with human endometriotic disease.


Asunto(s)
Endometriosis/patología , Animales , Modelos Animales de Enfermedad , Endometriosis/tratamiento farmacológico , Endometriosis/etiología , Endometrio/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inyecciones Intraperitoneales , Ratones Endogámicos C57BL , Programas Informáticos
3.
Endocr Relat Cancer ; 26(8): 689-698, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31167163

RESUMEN

Breast cancer is the most prevalent malignancy and second leading cause of death in women worldwide, with hormone receptor-positive luminal breast cancers being the most widespread subtype. While these tumors are generally amenable to endocrine therapy, cellular heterogeneity and acquired ability of tumor cells to undergo cell state switching makes these populations difficult to be fully targeted and eradicated through conventional methods. We have leveraged a quality-by-design (QbD) approach that integrates biological responses with predictive mathematical modeling to identify key combinations of commercially available drugs to induce estrogen receptor expression for therapeutic targeting. This technology utilizes a high level of automation through a custom-built platform to reduce bias as well as design-of-experiments methodology to minimize the experimental iterations required. Utilizing this approach, we identified a combination of clinical compounds, each at concentrations well below their efficacious dose, able to induce the expression of estrogen receptor alpha (ESR1) in hormone-positive breast cancer cells. Induction of ESR1 in luminal cells leads to chemosensitization. These findings provide proof of concept for the utility of the QbD strategy and identify a unique drug cocktail able to sensitize breast cancer cells to tamoxifen.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Everolimus/administración & dosificación , Femenino , Humanos , Ácidos Hidroxámicos/administración & dosificación , Indazoles/administración & dosificación , Células MCF-7 , Paclitaxel/administración & dosificación , Sulfonamidas/administración & dosificación , Tamoxifeno/análogos & derivados , Células Tumorales Cultivadas
4.
J Lipid Res ; 57(12): 2163-2175, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27777319

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.


Asunto(s)
Adipocitos/metabolismo , Antígeno Carcinoembrionario/fisiología , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Fibrosis , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BL , Niacina/farmacología , Obesidad/etiología , Obesidad/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-26284027

RESUMEN

CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue (WAT), we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While HF diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type (WT) mice. Histological examination revealed less expansion of adipocytes in L-CC1 than WT by HF intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures, and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to HF intake in L-CC1 than WT mice. Unlike WT, HF diet did not activate TGF-ß in WAT of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, HF diet caused relatively less collagen deposition in L-CC1 than WT mice, as shown by Trichrome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against HF diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...