Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 23(1): 56-67, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37703580

RESUMEN

Triple-negative breast cancer (TNBC) represents the most lethal and treatment-resistant breast cancer subtype with limited treatment options. We previously identified a protein complex unique to TNBC composed of the gap junction protein connexin 26 (Cx26), the pluripotency transcription factor NANOG, and focal adhesion kinase (FAK). We sought to determine whether a peptide mimetic of the interaction region of Cx26 attenuated tumor growth in preclinical models. We designed peptides based on Cx26 juxtamembrane domains and performed binding experiments with NANOG and FAK using surface plasmon resonance. Binding studies revealed that the Cx26 C-terminal tail and intracellular loop bound to NANOG and FAK with submicromolar-to-micromolar affinity and that a 5-amino acid sequence in the C-terminal tail of Cx26 (RYCSG) was sufficient for binding. Peptides with high affinity were engineered with a cell-penetrating antennapedia sequence and assessed in functional assays including cell proliferation, tumorsphere formation, and in vivo tumor growth, and downstream signaling changes were measured. The cell-penetrating Cx26 peptide (aCx26-pep) disrupted self-renewal while reducing nuclear FAK and NANOG and inhibiting NANOG target gene expression in TNBC cells but not luminal mammary epithelial cells. In vivo, aCx26-pep reduced tumor growth and proliferation and induced cell death. Here, we provide proof-of-concept that a Cx26 peptide-based strategy inhibits growth and alters NANOG activity specifically in TNBC, indicating the therapeutic potential of this targeting approach.


Asunto(s)
Péptidos de Penetración Celular , Conexina 26 , Quinasa 1 de Adhesión Focal , Proteína Homeótica Nanog , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/terapia , Proteína Homeótica Nanog/antagonistas & inhibidores , Humanos , Animales , Ratones , Línea Celular Tumoral , Conexina 26/química , Conexina 26/uso terapéutico , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/uso terapéutico
2.
Cancer Res ; 82(24): 4654-4669, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36206317

RESUMEN

Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death. Despite initial responses to intervention, up to 80% of patient tumors recur and require additional treatment. Retrospective clinical analysis of patients with ovarian cancer indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. Here, we assessed whether antibiotic (ABX) treatment would impact growth of EOC and sensitivity to cisplatin. Immunocompetent or immunocompromised mice were given untreated control or ABX-containing (metronidazole, ampicillin, vancomycin, and neomycin) water prior to intraperitoneal injection with EOC cells, and cisplatin therapy was administered biweekly until endpoint. Tumor-bearing ABX-treated mice exhibited accelerated tumor growth and resistance to cisplatin therapy compared with control treatment. ABX treatment led to reduced apoptosis, increased DNA damage repair, and enhanced angiogenesis in cisplatin-treated tumors, and tumors from ABX-treated mice contained a higher frequency of cisplatin-augmented cancer stem cells than control mice. Stool analysis indicated nonresistant gut microbial species were disrupted by ABX treatment. Cecal transplants of microbiota derived from control-treated mice was sufficient to ameliorate chemoresistance and prolong survival of ABX-treated mice, indicative of a gut-derived tumor suppressor. Metabolomics analyses identified circulating gut-derived metabolites that were altered by ABX treatment and restored by recolonization, providing candidate metabolites that mediate the cross-talk between the gut microbiome and ovarian cancer. Collectively, these findings indicate that an intact microbiome functions as a tumor suppressor in EOC, and perturbation of the gut microbiota with ABX treatment promotes tumor growth and suppresses cisplatin sensitivity. SIGNIFICANCE: Restoration of the gut microbiome, which is disrupted following antibiotic treatment, may help overcome platinum resistance in patients with epithelial ovarian cancer. See related commentary by Hawkins and Nephew, p. 4511.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Cisplatino/uso terapéutico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/patología , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA