Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 144, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097579

RESUMEN

Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's Disease (LRRK2-PD) and an important risk factor for sporadic PD (sPD). Multiple clinical trials are ongoing to evaluate the benefits associated with the therapeutical reduction of LRRK2 kinase activity. In this study, we described the changes of transcriptomic profiles (whole blood mRNA levels) of LRRK2 protein interactors in sPD and LRRK2-PD cases as compared to healthy controls with the aim of comparing the two PD conditions. We went on to model the protein-protein interaction (PPI) network centred on LRRK2, which was weighted to reflect the transcriptomic changes on expression and co-expression levels of LRRK2 protein interactors. Our results showed that LRRK2 interactors present both similar and distinct alterations in expression levels and co-expression behaviours in the sPD and LRRK2-PD cases; suggesting that, albeit being classified as the same disease based on clinical features, LRRK2-PD and sPD display significant differences from a molecular perspective. Interestingly, the similar changes across the two PD conditions result in decreased connectivity within a topological cluster of the LRRK2 PPI network associated with protein metabolism/biosynthesis and ribosomal metabolism suggesting protein homoeostasis and ribosomal dynamics might be affected in both sporadic and familial PD in comparison with controls.

2.
BMJ Ment Health ; 27(1)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886095

RESUMEN

BACKGROUND: Individuals with psychiatric disorders have an increased risk of developing dementia. Most cross-sectional studies suffer from selection bias, underdiagnosis and poor population representation, while there is only limited evidence from longitudinal studies on the role of anxiety, bipolar and psychotic disorders. Electronic health records (EHRs) permit large cohorts to be followed across the lifespan and include a wide range of diagnostic information. OBJECTIVE: To assess the association between four groups of psychiatric disorders (schizophrenia, bipolar disorder/mania, depression and anxiety) with dementia in two large population-based samples with EHR. METHODS: Using EHR on nearly 1 million adult individuals in Wales, and from 228 937 UK Biobank participants, we studied the relationships between schizophrenia, mania/bipolar disorder, depression, anxiety and subsequent risk of dementia. FINDINGS: In Secure Anonymised Information Linkage, there was a steep increase in the incidence of a first diagnosis of psychiatric disorder in the years prior to the diagnosis of dementia, reaching a peak in the year prior to dementia diagnosis for all psychiatric diagnoses. Psychiatric disorders, except anxiety, were highly significantly associated with a subsequent diagnosis of dementia: HRs=2.87, 2.80, 1.63 for schizophrenia, mania/bipolar disorder and depression, respectively. A similar pattern was found in the UK Biobank (HRs=4.46, 3.65, 2.39, respectively) and anxiety was also associated with dementia (HR=1.34). Increased risk of dementia was observed for all ages at onset of psychiatric diagnoses when these were divided into 10-year bins. CONCLUSIONS: Psychiatric disorders are associated with an increased risk of subsequent dementia, with a greater risk of more severe disorders. CLINICAL IMPLICATIONS: A late onset of psychiatric disorders should alert clinicians of possible incipient dementia.


Asunto(s)
Demencia , Trastornos Mentales , Humanos , Demencia/epidemiología , Demencia/etiología , Demencia/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Trastornos Mentales/epidemiología , Trastornos Mentales/diagnóstico , Gales/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Trastorno Bipolar/epidemiología , Trastorno Bipolar/diagnóstico , Reino Unido/epidemiología , Esquizofrenia/epidemiología , Esquizofrenia/diagnóstico , Factores de Riesgo , Anciano de 80 o más Años , Incidencia
3.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649377

RESUMEN

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Complejo Mayor de Histocompatibilidad , Esquizofrenia , Sustancia Blanca , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Femenino , Masculino , Adulto , Complejo Mayor de Histocompatibilidad/genética , Adulto Joven , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Persona de Mediana Edad , Imagen de Difusión Tensora , Cromosomas Humanos Par 6/genética , Axones/patología , Polimorfismo de Nucleótido Simple
4.
Alzheimers Dement ; 20(5): 3281-3289, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38506636

RESUMEN

INTRODUCTION: The Dementias Platform UK (DPUK) Data Portal is a data repository bringing together a wide range of cohorts. Neurodegenerative dementias are a group of diseases with highly heterogeneous pathology and an overlapping genetic component that is poorly understood. The DPUK collection of independent cohorts can facilitate research in neurodegeneration by combining their genetic and phenotypic data. METHODS: For genetic data processing, pipelines were generated to perform quality control analysis, genetic imputation, and polygenic risk score (PRS) derivation with six genome-wide association studies of neurodegenerative diseases. Pipelines were applied to five cohorts. DISCUSSION: The data processing pipelines, research-ready imputed genetic data, and PRS scores are now available on the DPUK platform and can be accessed upon request though the DPUK application process. Harmonizing genome-wide data for multiple datasets increases scientific opportunity and allows the wider research community to access and process data at scale and pace.


Asunto(s)
Demencia , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Demencia/genética , Reino Unido , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad , Estudios de Cohortes , Bases de Datos Genéticas
5.
JAMA Psychiatry ; 81(7): 681-690, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536179

RESUMEN

Importance: Large-scale biobanks provide important opportunities for mental health research, but selection biases raise questions regarding the comparability of individuals with those in clinical research settings. Objective: To compare the genetic liability to psychiatric disorders in individuals with schizophrenia in the UK Biobank with individuals in the Psychiatric Genomics Consortium (PGC) and to compare genetic liability and phenotypic features with participants recruited from clinical settings. Design, Setting, and Participants: This cross-sectional study included participants from the population-based UK Biobank and schizophrenia samples recruited from clinical settings (CLOZUK, CardiffCOGS, Cardiff F-Series, and Cardiff Affected Sib-Pairs). Data were collected between January 1993 and July 2021. Data analysis was conducted between July 2021 and June 2023. Main Outcomes and Measures: A genome-wide association study of UK Biobank schizophrenia case-control status was conducted, and the results were compared with those from the PGC via genetic correlations. To test for differences with the clinical samples, polygenic risk scores (PRS) were calculated for schizophrenia, bipolar disorder, depression, and intelligence using PRS-CS. PRS and phenotypic comparisons were conducted using pairwise logistic regressions. The proportions of individuals with copy number variants associated with schizophrenia were compared using Firth logistic regression. Results: The sample of 517 375 participants included 1438 UK Biobank participants with schizophrenia (550 [38.2%] female; mean [SD] age, 54.7 [8.3] years), 499 475 UK Biobank controls (271 884 [54.4%] female; mean [SD] age, 56.5 [8.1] years), and 4 schizophrenia research samples (4758 [28.9%] female; mean [SD] age, 38.2 [21.0] years). Liability to schizophrenia in UK Biobank was highly correlated with the latest genome-wide association study from the PGC (genetic correlation, 0.98; SE, 0.18) and showed the expected patterns of correlations with other psychiatric disorders. The schizophrenia PRS explained 6.8% of the variance in liability for schizophrenia case status in UK Biobank. UK Biobank participants with schizophrenia had significantly lower schizophrenia PRS than 3 of the clinically ascertained samples and significantly lower rates of schizophrenia-associated copy number variants than the CLOZUK sample. UK Biobank participants with schizophrenia had higher educational attainment and employment rates than the clinically ascertained schizophrenia samples, lower rates of smoking, and a later age of onset of psychosis. Conclusions and Relevance: Individuals with schizophrenia in the UK Biobank, and likely other volunteer-based biobanks, represent those less severely affected. Their inclusion in wider studies should enhance the representation of the full spectrum of illness severity.


Asunto(s)
Bancos de Muestras Biológicas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Fenotipo , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/epidemiología , Reino Unido/epidemiología , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Herencia Multifactorial/genética , Adulto , Estudios de Casos y Controles , Anciano , Variaciones en el Número de Copia de ADN/genética , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Biobanco del Reino Unido
6.
Elife ; 122024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285009

RESUMEN

Increasing evidence supports a role for deficient Wnt signaling in Alzheimer's disease (AD). Studies reveal that the secreted Wnt antagonist Dickkopf-3 (DKK3) colocalizes to amyloid plaques in AD patients. Here, we investigate the contribution of DKK3 to synapse integrity in healthy and AD brains. Our findings show that DKK3 expression is upregulated in the brains of AD subjects and that DKK3 protein levels increase at early stages in the disease. In hAPP-J20 and hAPPNL-G-F/NL-G-F mouse AD models, extracellular DKK3 levels are increased and DKK3 accumulates at dystrophic neuronal processes around plaques. Functionally, DKK3 triggers the loss of excitatory synapses through blockade of the Wnt/GSK3ß signaling with a concomitant increase in inhibitory synapses via activation of the Wnt/JNK pathway. In contrast, DKK3 knockdown restores synapse number and memory in hAPP-J20 mice. Collectively, our findings identify DKK3 as a novel driver of synaptic defects and memory impairment in AD.


Alzheimer's disease is the most common form of dementia worldwide. The cognitive decline typically observed in this condition is associated with the weakening and eventually the loss of synapses, the structures that allow neurons to communicate. Increasing evidence points to this deterioration being linked to deficiency in the Wnt signalling pathway, a cascade of molecular events crucial for brain function and development. The DKK protein family helps to tightly regulate the Wnt pathway by dampening its activity. Previous work suggests that DKK proteins could also be connected to Alzheimer's disease. For example, an elevated amount of DKK1 leads to synapse and memory defects in mice, while brain production of DKK1 is increased in individuals with late Alzheimer's. More recent studies show high levels of another DKK protein, DKK3, in Alzheimer's patients. This protein is also present in the harmful amyloid-ß aggregates, named 'plaques', that typically form in the brain in this condition. Despite these findings, how DKK3 participates in synaptic health remains unclear. To address this question, Martin-Flores, Podpolny et al. tracked DKK3 levels in the brains of Alzheimer's patients, revealing that they increase early in the disease. Additional experiments in Alzheimer's mouse models suggested that DKK3 secretion rise before amyloid-ß plaques form, with the protein then accumulating in abnormal neuronal structures present in the surroundings of these toxic deposits. Martin-Flores, Podpolny et al. then examined the impact of DKK3 on the Wnt pathway, and ultimately, on the balance between synapses that control neuronal activity. These experiments showed that elevated DKK3 levels are linked to a loss of synapses which are excitatory, with a concomitant increase in those that are inhibitory. Crucially, reducing DKK3 levels in a mouse model of Alzheimer's restored this synaptic balance and improved memory, highlighting DKK3 as a potential driver of cognitive impairment. Overall, these findings help to refine our understanding of the molecular mechanisms that contribute to synaptic impairment in Alzheimer's disease. They may also be relevant for researchers studying other conditions that involve aberrant activity of the Wnt pathway, such as cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Transporte Biológico , Modelos Animales de Enfermedad , Regulación hacia Abajo , Placa Amiloide , Sinapsis , Proteínas Adaptadoras Transductoras de Señales/genética
7.
Alzheimers Res Ther ; 15(1): 213, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087383

RESUMEN

BACKGROUND: Genome-wide association studies demonstrate that Alzheimer's disease (AD) has a highly polygenic architecture, where thousands of independent genetic variants explain risk with high classification accuracy. This AD polygenic risk score (AD-PRS) has been previously linked to preclinical cognitive and neuroimaging features observed in asymptomatic individuals. However, shared variance between AD-PRS and neurocognitive features are small, suggesting limited preclinical utility. METHODS: Here, we recruited sixteen clinically asymptomatic individuals (mean age 67; range 58-76) with either extremely low / high AD-PRS (defined as at least 2 standard deviations from the wider sample mean (N = 4504; N EFFECTIVE = 90)) with comparable age sex and education level. We assessed group differences in autobiographical memory and T1-weighted structural neuroimaging features. RESULTS: We observed marked reductions in autobiographical recollection (Cohen's d = - 1.66; P FDR = 0.014) and midline structure (cingulate) thickness (Cohen's d = - 1.55, P FDR = 0.05), with no difference in hippocampal volume (P > 0.3). We further confirm the negative association between AD-PRS and cingulate thickness in a larger study with a comparable age (N = 31,966, ß = - 0.002, P = 0.011), supporting the validity of our approach. CONCLUSIONS: These observations conform with multiple streams of prior evidence suggesting alterations in cingulate structures may occur in individuals with higher AD genetic risk. We were able to use a genetically informed research design strategy that significantly improved the efficiency and power of the study. Thus, we further demonstrate that the recall-by-genotype of AD-PRS from wider samples is a promising approach for the detection, assessment, and intervention in specific individuals with increased AD genetic risk.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Giro del Cíngulo/diagnóstico por imagen , Estudio de Asociación del Genoma Completo , Genotipo , Neuroimagen
8.
medRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106032

RESUMEN

Background: Diagnoses in psychiatric research can be derived from various sources. This study assesses the validity of a self-reported clinical diagnosis of schizophrenia. Methods: The study included 3,029 clinically ascertained participants with schizophrenia or psychotic disorders diagnosed by self-report and/or research interview and 1,453 UK Biobank participants with self-report and/or medical record diagnosis of schizophrenia or schizoaffective disorder depressed-type (SA-D). We assessed positive predictive values (PPV) of self-reported clinical diagnoses against research interview and medical record diagnoses. We compared polygenic risk scores (PRS) and phenotypes across diagnostic groups, and compared the variance explained by schizophrenia PRS to samples in the Psychiatric Genomics Consortium (PGC). Results: In the clinically ascertained sample, the PPV of self-reported schizophrenia to a research diagnosis of schizophrenia was 0.70, which increased to 0.81 when benchmarked against schizophrenia or SA-D. In UK Biobank, the PPV of self-reported schizophrenia to a medical record diagnosis was 0.74. Compared to self-report participants, those with a research diagnosis were younger and more likely to have a high school qualification (clinically ascertained sample) and those with a medical record diagnosis were less likely to be employed or have a high school qualification (UK Biobank). Schizophrenia PRS did not differ between participants that had a diagnosis from self-report, research diagnosis or medical record diagnosis. Polygenic liability r2, for all diagnosis definitions, fell within the distribution of PGC schizophrenia cohorts. Conclusions: Self-report measures of schizophrenia are justified in research to maximise sample size and representativeness, although within sample validation of diagnoses is recommended.

9.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986827

RESUMEN

The relationship between sleep disorders and neurodegeneration is complex and multi-faceted. Using over one million electronic health records (EHRs) from Wales, UK, and Finland, we mined biobank data to identify the relationships between sleep disorders and the subsequent manifestation of neurodegenerative diseases (NDDs) later in life. We then examined how these sleep disorders' severity impacts neurodegeneration risk. Additionally, we investigated how sleep attributed risk may compensate for the lack of genetic risk factors (i.e. a lower polygenic risk score) in NDD manifestation. We found that sleep disorders such as sleep apnea were associated with the risk of Alzheimer's disease (AD), amyotrophic lateral sclerosis, dementia, Parkinson's disease (PD), and vascular dementia in three national scale biobanks, with hazard ratios (HRs) ranging from 1.31 for PD to 5.11 for dementia. These sleep disorders imparted significant risk up to 15 years before the onset of an NDD. Cumulative number of sleep disorders in the EHRs were associated with a higher risk of neurodegeneration for dementia and vascular dementia. Sleep related risk factors were independent of genetic risk for Alzheimer's and Parkinson's, potentially compensating for low genetic risk in overall disease etiology. There is a significant multiplicative interaction regarding the combined risk of sleep disorders and Parkinson's disease. Poor sleep hygiene and sleep apnea are relatively modifiable risk factors with several treatment options, including CPAP and surgery, that could potentially reduce the risk of neurodegeneration. This is particularly interesting in how sleep related risk factors are significantly and independently enriched in manifesting NDD patients with low levels of genetic risk factors for these diseases.

10.
Biol Psychiatry Glob Open Sci ; 3(4): 902-911, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881570

RESUMEN

Background: Copy number variations (CNVs) conferring risk for mental disorders are associated with brain changes and cognitive deficits. However, whether these effects are shared or distinct across CNVs remains untested. Here we compared the effects on brain morphometry and cognitive performance across CNVs with shared psychiatric liability. Methods: Unaffected and unrelated participants of White British and Irish ancestry were drawn from the UK Biobank. After quality control, we retained 31,941 participants not carrying any damaging CNVs and 202 participants carrying one CNV increasing risk for schizophrenia. Using regression analyses, we tested the association between brain morphometry and cognitive performance with CNV carrying status and compared these effect sizes across CNVs using z test for the equality of regression coefficients. Equation modeling was used to examine the mediation of brain phenotypes on the association between CNVs and cognitive performance. Results: We detected different patterns of association between CNVs and brain morphometry and cognitive abilities. Comparing across CNVs, 1q21.1 deletion showed the strongest association with surface area in frontal lobe (ß = -1.03, p = 4 × 10-8; ß = -0.81, p = .00001) and performance in digit memory (ß = -1.58, p = .00003), while 1q21.1 duplication showed the strongest association with volume of the putamen (ß = -0.70, p = .0004) and reaction time (ß = -1.14, p = .000002). We also showed that even when 2 CNVs were associated with performance in the same cognitive ability, these associations were mediated by different brain changes. Conclusions: Despite sharing similar psychiatric liability, the CNVs under study appeared to have different effects on brain morphometry and on performance in cognitive abilities, suggesting the existence of distinctive neurobiological pathways into the same clinical phenotypes.

11.
Brain Commun ; 5(5): fcad229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744023

RESUMEN

Genome-wide association studies have identified multiple Alzheimer's disease risk loci with small effect sizes. Polygenic risk scores, which aggregate these variants, are associated with grey matter structural changes. However, genome-wide scores do not allow mechanistic interpretations. The present study explored associations between disease pathway-specific scores and grey matter structure in younger and older adults. Data from two separate population cohorts were used as follows: the Avon Longitudinal Study of Parents and Children, mean age 19.8, and UK Biobank, mean age 64.4 (combined n = 18 689). Alzheimer's polygenic risk scores were computed using the largest genome-wide association study of clinically assessed Alzheimer's to date. Relationships between subcortical volumes and cortical thickness, pathway-specific scores and genome-wide scores were examined. Increased pathway-specific scores were associated with reduced cortical thickness in both the younger and older cohorts. For example, the reverse cholesterol transport pathway score showed evidence of association with lower left middle temporal cortex thickness in the younger Avon participants (P = 0.034; beta = -0.013, CI -0.025, -0.001) and in the older UK Biobank participants (P = 0.019; beta = -0.003, CI -0.005, -4.56 × 10-4). Pathway scores were associated with smaller subcortical volumes, such as smaller hippocampal volume, in UK Biobank older adults. There was also evidence of positive association between subcortical volumes in Avon younger adults. For example, the tau protein-binding pathway score was negatively associated with left hippocampal volume in UK Biobank (P = 8.35 × 10-05; beta = -11.392, CI -17.066, -5.718) and positively associated with hippocampal volume in the Avon study (P = 0.040; beta = 51.952, CI 2.445, 101.460). The immune response score had a distinct pattern of association, being only associated with reduced thickness in the right posterior cingulate in older and younger adults (P = 0.011; beta = -0.003, CI -0.005, -0.001 in UK Biobank; P = 0.034; beta = -0.016, CI -0.031, -0.001 in the Avon study). The immune response score was associated with smaller subcortical volumes in the older adults, but not younger adults. The disease pathway scores showed greater evidence of association with imaging phenotypes than the genome-wide score. This suggests that pathway-specific polygenic methods may allow progress towards a mechanistic understanding of structural changes linked to polygenic risk in pre-clinical Alzheimer's disease. Pathway-specific profiling could further define pathophysiology in individuals, moving towards precision medicine in Alzheimer's disease.

12.
Psychoneuroendocrinology ; 158: 106393, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774659

RESUMEN

Medial temporal lobe (MTL) atrophy is correlated with risk and severity of Alzheimer disease (AD) pathology and cognitive decline. Increasing evidence suggest that oestrogens affect the aging of MTL structures. Here we investigate the relationship between reproductive hormone exposure, polygenic scores for AD risk and oestradiol concentration, MTL anatomy and cognitive performance in postmenopausal women. To this end, we used data from 10,924 female participants in the UK Biobank from whom brain MRI and genetic data were available. We fitted linear regression models to test whether the volume of structures comprising the MTL were predicted by a) timing related to menopause, b) the use and timing of hormone replacement therapy (HRT) and c) polygenic scores for AD risk and oestradiol concentration. Results showed that longer use of HRT was associated with larger parahippocampal volumes (2.53 mm3/year, p = 0.042). A later age of natural menopause, and a longer reproductive span, was associated with larger hippocampal (6.08 and 5.72 mm3/year, p = 0.0006 and 0.0005), parahippocampal (4.17 mm3 and 4.19 mm3/year, p = 0.00006 and 0.00001), amygdala (2.10 and 2.22 mm3/year, p = 0.028 and 0.01) and perirhinal cortical (2.56 and 2.95 mm3/year, p = 0.028 and 0.008) volumes. Superior prospective memory performance was associated with later age at natural menopause, and a longer reproductive span (ß = 0.05 and 0.05 respectively, p = 0.019 and 0.019). Polygenic scores for AD risk and for oestradiol concentration were not associated with MTL volume and did not interact with menopause-related factors to affect MTL structure. Our results suggest that HRT use did not have any detrimental effects on cognition or brain structure, whilst greater exposure to reproductive hormones across time is associated both with slightly larger volumes of specific MTL structures and marginally superior memory performance, independent of genetic risk for AD and genetic predisposition for higher oestradiol levels. However, the clinical utility of maintenance of oestrogens post-menopause for brain health and protection against cognitive decline is curtailed by the small effect sizes observed.


Asunto(s)
Enfermedad de Alzheimer , Posmenopausia , Humanos , Femenino , Duración de la Terapia , Lóbulo Temporal/patología , Enfermedad de Alzheimer/patología , Menopausia , Imagen por Resonancia Magnética , Estrógenos , Estradiol
13.
medRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461547

RESUMEN

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations we found an overall carrier frequency of REDs of 1 in 340 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that REDs are up to 3-fold more prevalent than currently reported figures. While some REDs are population-specific, e.g. Huntington's disease type 2, most REDs are represented in all broad genetic ancestries, including Africans and Asians, challenging the notion that some REDs are found only in European populations. These results have worldwide implications for local and global health communities in the diagnosis and management of REDs both at local and global levels.

14.
J Neuroinflammation ; 20(1): 169, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480051

RESUMEN

BACKGROUND: Alzheimer's disease (AD) has been associated with immune dysregulation in biomarker and genome-wide association studies (GWAS). GWAS hits include the genes encoding complement regulators clusterin (CLU) and complement receptor 1 (CR1), recognised as key players in AD pathology, and complement proteins have been proposed as biomarkers. MAIN BODY: To address whether changes in plasma complement protein levels in AD relate to AD-associated complement gene variants we first measured relevant plasma complement proteins (clusterin, C1q, C1s, CR1, factor H) in a large cohort comprising early onset AD (EOAD; n = 912), late onset AD (LOAD; n = 492) and control (n = 504) donors. Clusterin and C1q were significantly increased (p < 0.001) and sCR1 and factor H reduced (p < 0.01) in AD plasma versus controls. ROC analyses were performed to assess utility of the measured complement biomarkers, alone or in combination with amyloid beta, in predicting AD. C1q was the most predictive single complement biomarker (AUC 0.655 LOAD, 0.601 EOAD); combining C1q with other complement or neurodegeneration makers through stepAIC-informed models improved predictive values slightly. Effects of GWS SNPs (rs6656401, rs6691117 in CR1; rs11136000, rs9331888 in CLU; rs3919533 in C1S) on protein concentrations were assessed by comparing protein levels in carriers of the minor vs major allele. To identify new associations between SNPs and changes in plasma protein levels, we performed a GWAS combining genotyping data in the cohort with complement protein levels as endophenotype. SNPs in CR1 (rs6656401), C1S (rs3919533) and CFH (rs6664877) reached significance and influenced plasma levels of the corresponding protein, whereas SNPs in CLU did not influence clusterin levels. CONCLUSION: Complement dysregulation is evident in AD and may contribute to pathology. AD-associated SNPs in CR1, C1S and CFH impact plasma levels of the encoded proteins, suggesting a mechanism for impact on disease risk.


Asunto(s)
Enfermedad de Alzheimer , Factor H de Complemento , Humanos , Factor H de Complemento/genética , Enfermedad de Alzheimer/genética , Clusterina/genética , Péptidos beta-Amiloides , Complemento C1q , Estudio de Asociación del Genoma Completo , Proteínas del Sistema Complemento/genética
15.
Lancet Psychiatry ; 10(8): 623-631, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437579

RESUMEN

BACKGROUND: Current definitions and clinical heterogeneity in bipolar disorder are major concerns as they obstruct aetiological research and impede drug development. Therefore, stratification of bipolar disorder is a high priority. To inform stratification, our analysis aimed to examine the patterns and relationships between polygenic liability for bipolar disorder, major depressive disorder (MDD), and schizophrenia with multidimensional symptom representations of bipolar disorder. METHODS: In this analysis, data from the UK Bipolar Disorder Research Network (BDRN) were assessed with the Operational Checklist for Psychotic Disorders. Individuals with bipolar disorder as defined in DSM-IV, of European ancestry (self-reported), aged 18 years or older at time of interview, living in the UK, and registered with the BDRN were eligible for inclusion. Psychopathological variables obtained via interview by trained research psychologists or psychiatrists and psychiatric case notes were used to identify statistically distinct symptom dimensions, calibrated with exploratory factor analysis and validated with confirmatory factor analysis (CFA). CFA was extended to include three polygenic risk scores (PRSs) indexing liability for bipolar disorder, MDD, and schizophrenia in a multiple indicator multiple cause (MIMIC) structural equation model to estimate PRS relationships with symptom dimensions. FINDINGS: Of 4198 individuals potentially eligible for inclusion, 4148 (2804 [67·6%] female individuals and 1344 [32·4%] male individuals) with a mean age at interview of 45 years (SD 12·03) were available for analysis. Three reliable dimensions (mania, depression, and psychosis) were identified. The MIMIC model fitted the data well (root mean square error of approximation 0·021, 90% CI 0·019-0·023; comparative fit index 0·99) and suggests statistically distinct symptom dimensions also have distinct polygenic profiles. The PRS for MDD was strongly associated with the depression dimension (standardised ß 0·125, 95% CI 0·080-0·171) and the PRS for schizophrenia was strongly associated with the psychosis dimension (0·108, 0·082-0·175). For the mania dimension, the PRS for bipolar disorder was weakly associated (0·050, 0·002-0·097). INTERPRETATION: Our findings support the hypothesis that genetic heterogeneity underpins clinical heterogeneity, suggesting that different symptom dimensions within bipolar disorder have partly distinct causes. Furthermore, our results suggest that a specific symptom dimension has a similar cause regardless of the primary psychiatric diagnosis, supporting the use of symptom dimensions in precision psychiatry. FUNDING: Wellcome Trust and UK Medical Research Council.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Psicóticos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Trastorno Bipolar/psicología , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/genética , Manía , Trastornos Psicóticos/diagnóstico , Reino Unido , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética
16.
Ann Hum Genet ; 87(5): 203-209, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37416935

RESUMEN

Polygenic risk scores (PRS) are a method increasingly used to capture the combined effect of genome-wide significant variants and those which individually do not show genome-wide significant association but are likely to contribute to the risk of developing diseases. However, their practical use incurs complications and inconsistencies that so far limit their clinical applicability. The aims of the present review are to discuss the PRS for age-related diseases and to highlight pitfalls and limitations of PRS prediction accuracy due to ageing and mortality effects. We argue that the PRS is widely used but the individual's PRS values differ substantially depending on the number of genetic variants included, the discovery GWAS and the method employed to generate them. Moreover, for neurodegenerative disorders, although an individual's genetics do not change with age, the actual score depends on the age of the sample used in the discovery GWAS and is likely to reflect the individual's disease risk at this particular age. Improvement of PRS prediction accuracy for neurodegenerative disorders will come from two sides, both the precision of clinical diagnoses, and a careful attention to the age distribution in the underlying samples and validation of the prediction in longitudinal studies.


Asunto(s)
Herencia Multifactorial , Factores de Riesgo , Fenotipo , Envejecimiento , Humanos , Estudio de Asociación del Genoma Completo , Alérgenos
17.
J Neurol Sci ; 451: 120715, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385025

RESUMEN

Dementia is one of the most common diseases in elderly populations, and older populations are one of the fastest growing groups globally. Consequently, the number of people developing and living with dementia is likely to grow. Using longitudinal medical records from Wales, UK between 1999 and 2018, diagnoses of overall dementia and common subtypes were combined with demographic data to assess numbers of new and existing cases per year. Data extraction resulted in 161,186 diagnoses from 116,645 individuals. Mean age at diagnosis of dementia increased over this period, resulting in fewer younger people with the disease. New cases of dementia have risen, as has the number of people living with dementia. Individuals with dementia are also living longer, even accounting for their older age. This may present a challenge for healthcare systems as the number of elderly people living with dementia is expected to continue to grow.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Anciano , Humanos , Demencia/epidemiología , Demencia/diagnóstico , Gales/epidemiología , Atención a la Salud , Incidencia , Enfermedad de Alzheimer/diagnóstico
18.
Mol Autism ; 14(1): 19, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221545

RESUMEN

BACKGROUND: Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value. We used machine learning approaches to address this question. METHOD: A total of 493 individuals were included: 389 with a ND-GC, mean age = 9.01, 66% male) and 104 siblings without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) were used to develop classifiers of ND-GC status and identified limited sets of variables that gave the best classification performance. Exploratory graph analysis was used to understand associations within the final variable set. RESULTS: All machine learning methods identified variable sets giving high classification accuracy (AUROC between 0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND-GCs and controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor development. LIMITATIONS: This study used cross-sectional data from a cohort study which was imbalanced with respect to ND-GC status. Our model requires validation in independent datasets and with longitudinal follow-up data for validation before clinical application. CONCLUSIONS: In this study, we developed models that identified a compact set of psychiatric and physical health measures that differentiate individuals with a ND-GC from controls and highlight higher-order structure within these measures. This work is a step towards developing a screening instrument to identify young people with ND-GCs who might benefit from further specialist assessment.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Masculino , Humanos , Adolescente , Niño , Femenino , Estudios de Cohortes , Estudios Transversales , Genómica , Aprendizaje Automático
19.
BMC Public Health ; 23(1): 804, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131166

RESUMEN

BACKGROUND: Metformin, a medication for type 2 diabetes, has been linked to many non-diabetes health benefits including increasing healthy lifespan. Previous work has only examined the benefits of metformin over periods of less than ten years, which may not be long enough to capture the true effect of this medication on longevity. METHODS: We searched medical records for Wales, UK, using the Secure Anonymised Information Linkage dataset for type 2 diabetes patients treated with metformin (N = 129,140) and sulphonylurea (N = 68,563). Non-diabetic controls were matched on sex, age, smoking, and history of cancer and cardiovascular disease. Survival analysis was performed to examine survival time after first treatment, using a range of simulated study periods. FINDINGS: Using the full twenty-year period, we found that type 2 diabetes patients treated with metformin had shorter survival time than matched controls, as did sulphonylurea patients. Metformin patients had better survival than sulphonylurea patients, controlling for age. Within the first three years, metformin therapy showed a benefit over matched controls, but this reversed after five years of treatment. INTERPRETATION: While metformin does appear to confer benefits to longevity in the short term, these initial benefits are outweighed by the effects of type 2 diabetes when patients are observed over a period of up to twenty years. Longer study periods are therefore recommended for studying longevity and healthy lifespan. EVIDENCE BEFORE THIS STUDY: Work examining the non-diabetes outcomes of metformin therapy has suggested that there metformin has a beneficial effect on longevity and healthy lifespan. Both clinical trials and observational studies broadly support this hypothesis, but tend to be limited in the length of time over which they can study patients or participants. ADDED VALUE OF THIS STUDY: By using medical records we are able to study individuals with Type 2 diabetes over a period of two decades. We are also able to account for the effects of cancer, cardiovascular disease, hypertension, deprivation, and smoking on longevity and survival time following treatment. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE: We confirm that there is an initial benefit to longevity of metformin therapy, but this benefit does not outweigh the negative effect on longevity of diabetes. Therefore, we suggest that longer study periods are required for inference to be made about longevity in future research.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Enfermedades Cardiovasculares/inducido químicamente , Longevidad , Compuestos de Sulfonilurea/efectos adversos
20.
PLoS One ; 18(4): e0281440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115753

RESUMEN

INTRODUCTION: Both late-onset Alzheimer's disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS: We compute heritability in five large independent cohorts (N = 7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS: SNP-based heritability of late onset Alzheimer's disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD = 8%] on average when the APOE region is excluded and an additional 1% [SD = 3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Enfermedad de Alzheimer/genética , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Apolipoproteínas E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...