Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 245, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875972

RESUMEN

BACKGROUND: Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS: We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS: We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION: The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.


Asunto(s)
Síndrome de Guillain-Barré , Proteínas de la Membrana , Ratones , Humanos , Animales , Nódulos de Ranvier , Proteínas del Sistema Complemento , Antígenos CD59/genética , Antígenos CD55/genética
2.
Nat Commun ; 14(1): 6797, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884508

RESUMEN

Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we use antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we use CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We identify Contactin-1 (Cntn1) as an AIS cell surface protein. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS extracellular matrix, and regulates AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.


Asunto(s)
Segmento Inicial del Axón , Fenómenos Biológicos , Segmento Inicial del Axón/metabolismo , Contactina 1/metabolismo , Biotinilación , Sinapsis/metabolismo , Axones/metabolismo , Proteínas de la Membrana/metabolismo , Anticuerpos/metabolismo
3.
J Peripher Nerv Syst ; 28 Suppl 3: S3-S11, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272548

RESUMEN

Action potential propagation along myelinated axons depends on the geometry of the myelin unit and the division of the underlying axon to specialized domains. The latter include the nodes of Ranvier (NOR), the paranodal junction (PNJ) flanking the nodes, and the adjacent juxtaparanodal region that is located below the compact myelin of the internode. Each of these domains contains a unique composition of axoglial adhesion molecules (CAMs) and cytoskeletal scaffolding proteins, which together direct the placement of specific ion channels at the nodal and juxtaparanodal axolemma. In the last decade it has become increasingly clear that antibodies to some of these axoglial CAMs cause immune-mediated neuropathies. In the current review we detail the molecular composition of the NOR and adjacent membrane domains, describe the function of different CAM complexes that mediate axon-glia interactions along the myelin unit, and discuss their involvement and the underlying mechanisms taking place in peripheral nerve pathologies. This growing group of pathologies represent a new type of neuropathies termed "nodopathies" or "paranodopathies" that are characterized by unique clinical and molecular features which together reflect the mechanisms underlying the molecular assembly and maintenance of this specialized membrane domain.


Asunto(s)
Axones , Nódulos de Ranvier , Humanos , Nódulos de Ranvier/patología , Vaina de Mielina , Neuroglía , Nervios Periféricos
4.
bioRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945454

RESUMEN

Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we used antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we used CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We found Contactin-1 (Cntn1) among the previously unknown AIS proteins we identified. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS-extracellular matrix, and is required for AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.

5.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36828548

RESUMEN

Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.


Asunto(s)
Proteínas ADAM , Axones , Vaina de Mielina , Proteínas del Tejido Nervioso , Canales de Potasio con Entrada de Voltaje , Potenciales de Acción , Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Proteínas ADAM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
7.
Brain ; 144(4): 1197-1213, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33889941

RESUMEN

The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified-by whole exome sequencing-three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations.


Asunto(s)
Moléculas de Adhesión Celular/genética , Enfermedad de Charcot-Marie-Tooth/genética , Inmunoglobulinas/genética , Adulto , Axones/patología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neuroglía/patología , Linaje , Fenotipo
8.
Brain ; 144(10): 3061-3077, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33914858

RESUMEN

WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.


Asunto(s)
Epilepsia/genética , Eliminación de Gen , Vaina de Mielina/genética , Neuronas/fisiología , Oxidorreductasa que Contiene Dominios WW/deficiencia , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Encéfalo/patología , Técnicas de Cocultivo , Epilepsia/patología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/patología , Neuronas/patología , Organoides , Oxidorreductasa que Contiene Dominios WW/antagonistas & inhibidores
9.
J Neurosci ; 41(7): 1393-1400, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33397712

RESUMEN

Cell adhesion proteins of the Cadm (SynCAM/Necl) family regulate myelination and the organization of myelinated axons. In the peripheral nervous system (PNS), intercellular contact between Schwann cells and their underlying axons is believed to be mediated by binding of glial Cadm4 to axonal Cadm3 or Cadm2. Nevertheless, given that distinct neurons express different combinations of the Cadm proteins, the identity of the functional axonal ligand for Cadm4 remains to be determined. Here, we took a genetic approach to compare the phenotype of Cadm4 null mice, which exhibit abnormal distribution of Caspr and Kv1 potassium channels, with mice lacking different combinations of Cadm1-Cadm3 genes. We show that in contrast to mice lacking the single Cadm1, Cadm2, or Cadm3 genes, genetic ablation of all three phenocopies the abnormalities detected in the absence of Cadm4. Similar defects were observed in double mutant mice lacking Cadm3 and Cadm2 (i.e., Cadm3-/-/Cadm2-/-) or Cadm3 and Cadm1 (i.e., Cadm3-/-/Cadm1-/-), but not in mice lacking Cadm1 and Cadm2 (i.e., Cadm1-/-/Cadm2-/-). Furthermore, axonal organization abnormalities were also detected in Cadm3 null mice that were heterozygous for the two other axonal Cadms. Our results identify Cadm3 as the main axonal ligand for glial Cadm4, and reveal that its absence could be compensated by the combined action of Cadm2 and Cadm1.SIGNIFICANCE STATEMENT Myelination by Schwann cells enables fast conduction of action potentials along motor and sensory axons. In these nerves, Schwann cell-axon contact is mediated by cell adhesion molecules of the Cadm family. Cadm4 in Schwann cells regulates axonal ensheathment and myelin wrapping, as well as the organization of the axonal membrane, but the identity of its axonal ligands is not clear. Here, we reveal that Cadm mediated axon-glia interactions depend on a hierarchical adhesion code that involves multiple family members. Our results provide important insights into the molecular mechanisms of axon-glia communication, and the function of Cadm proteins in PNS myelin.


Asunto(s)
Axones/metabolismo , Molécula 1 de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/deficiencia , Comunicación Celular/fisiología , Inmunoglobulinas/deficiencia , Fibras Nerviosas Mielínicas/metabolismo , Neuroglía/metabolismo , Animales , Molécula 1 de Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Inmunoglobulinas/genética , Ratones , Ratones Noqueados , Nervios Periféricos/metabolismo
10.
Dev Neurobiol ; 81(5): 427-437, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-31859465

RESUMEN

In excitable membranes, the clustering of voltage-gated sodium channels (VGSC) serves to enhance excitability at critical sites. The two most profoundly studied sites of channel clustering are the axon initial segment, where action potentials are generated and the node of Ranvier, where action potentials propagate along myelinated axons. The clustering of VGSC is found, however, in other highly excitable sites such as axonal terminals, postsynaptic membranes of dendrites and muscle fibers, and pre-myelinated axons. In this review, different examples of axonal as well as non-axonal clustering of VGSC are discussed and the underlying mechanisms are compared. Whether the clustering of channels is intrinsically or extrinsically induced, it depends on the submembranous actin-based cytoskeleton that organizes these highly specialized membrane microdomains through specific adaptor proteins.


Asunto(s)
Axones , Canales de Sodio Activados por Voltaje , Potenciales de Acción/fisiología , Axones/metabolismo , Análisis por Conglomerados , Canales de Sodio Activados por Voltaje/metabolismo
11.
Neuron ; 106(5): 806-815.e6, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32209430

RESUMEN

During development of the peripheral nervous system (PNS), Schwann-cell-secreted gliomedin induces the clustering of Na+ channels at the edges of each myelin segment to form nodes of Ranvier. Here we show that bone morphogenetic protein-1 (BMP1)/Tolloid (TLD)-like proteinases confine Na+ channel clustering to these sites by negatively regulating the activity of gliomedin. Eliminating the Bmp1/TLD cleavage site in gliomedin or treating myelinating cultures with a Bmp1/TLD inhibitor results in the formation of numerous ectopic Na+ channel clusters along axons that are devoid of myelin segments. Furthermore, genetic deletion of Bmp1 and Tll1 genes in mice using a Schwann-cell-specific Cre causes ectopic clustering of nodal proteins, premature formation of heminodes around early ensheathing Schwann cells, and altered nerve conduction during development. Our results demonstrate that by inactivating gliomedin, Bmp1/TLD functions as an additional regulatory mechanism to ensure the correct spatial and temporal assembly of PNS nodes of Ranvier.


Asunto(s)
Proteína Morfogenética Ósea 1/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Vaina de Mielina/metabolismo , Nódulos de Ranvier/metabolismo , Metaloproteinasas Similares a Tolloid/genética , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Proteína Morfogenética Ósea 1/metabolismo , Ratones , Ratones Noqueados , Conducción Nerviosa , Sistema Nervioso Periférico , Transporte de Proteínas , Células de Schwann/metabolismo , Metaloproteinasas Similares a Tolloid/metabolismo
12.
J Cell Biol ; 218(9): 2887-2895, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31451613

RESUMEN

Oligodendrocyte-axon contact is mediated by several cell adhesion molecules (CAMs) that are positioned at distinct sites along the myelin unit, yet their role during myelination remains unclear. Cadm4 and its axonal receptors, Cadm2 and Cadm3, as well as myelin-associated glycoprotein (MAG), are enriched at the internodes below the compact myelin, whereas NF155, which binds the axonal Caspr/contactin complex, is located at the paranodal junction that is formed between the axon and the terminal loops of the myelin sheath. Here we report that Cadm4-, MAG-, and Caspr-mediated adhesion cooperate during myelin membrane ensheathment. Genetic deletion of either Cadm4 and MAG or Cadm4 and Caspr resulted in the formation of multimyelinated axons due to overgrowth of the myelin away from the axon and the forming paranodal junction. Consequently, these mice displayed paranodal loops either above or underneath compact myelin. Our results demonstrate that accurate placement of the myelin sheath by oligodendrocytes requires the coordinated action of internodal and paranodal CAMs.


Asunto(s)
Axones/metabolismo , Uniones Intercelulares/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Uniones Intercelulares/genética , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Oligodendroglía/citología
13.
Neuron ; 101(2): 224-231.e5, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30551998

RESUMEN

The initiation of axoglial contact is considered a prerequisite for myelination, yet the role cell adhesion molecules (CAMs) play in mediating such interactions remains unclear. To examine the function of axoglial CAMs, we tested whether enhanced CAM-mediated adhesion between OLs and neurons could affect myelination. Here we show that increased expression of a membrane-bound extracellular domain of Cadm4 (Cadm4dCT) in cultured oligodendrocytes results in the production of numerous axoglial contact sites that fail to elongate and generate mature myelin. Transgenic mice expressing Cadm4dCT were hypomyelinated and exhibit multiple myelin abnormalities, including myelination of neuronal somata. These abnormalities depend on specific neuron-glial interaction as they were not observed when these OLs were cultured alone, on nanofibers, or on neurons isolated from mice lacking the axonal receptors of Cadm4. Our results demonstrate that tightly regulated axon-glia adhesion is essential for proper myelin targeting and subsequent membrane wrapping and lateral extension.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Adhesión Celular/fisiología , Sistema Nervioso Central/citología , Vaina de Mielina/fisiología , Neuronas/citología , Células Precursoras de Oligodendrocitos/fisiología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/ultraestructura , Células Cultivadas , Sistema Nervioso Central/metabolismo , Técnicas de Cocultivo , Femenino , Ganglios Espinales/citología , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/ultraestructura , Oligodendroglía/citología , Ratas Wistar
14.
Neurol Genet ; 4(6): e280, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30533526

RESUMEN

OBJECTIVE: To characterize all 4 mutations described for CD59 congenital deficiency. METHODS: The 4 mutations, p.Cys64Tyr, p.Asp24Val, p.Asp24Valfs*, and p.Ala16Alafs*, were described in 13 individuals with CD59 malfunction. All 13 presented with recurrent Guillain-Barré syndrome or chronic inflammatory demyelinating polyneuropathy, recurrent strokes, and chronic hemolysis. Here, we track the molecular consequences of the 4 mutations and their effects on CD59 expression, localization, glycosylation, degradation, secretion, and function. Mutants were cloned and inserted into plasmids to analyze their expression, localization, and functionality. RESULTS: Immunolabeling of myc-tagged wild-type (WT) and mutant CD59 proteins revealed cell surface expression of p.Cys64Tyr and p.Asp24Val detected with the myc antibody, but no labeling by anti-CD59 antibodies. In contrast, frameshift mutants p.Asp24Valfs* and p.Ala16Alafs* were detected only intracellularly and did not reach the cell surface. Western blot analysis showed normal glycosylation but mutant-specific secretion patterns. All mutants significantly increased MAC-dependent cell lysis compared with WT. In contrast to CD59 knockout mice previously used to characterize phenotypic effects of CD59 perturbation, all 4 hCD59 mutations generate CD59 proteins that are expressed and may function intracellularly (4) or on the cell membrane (2). None of the 4 CD59 mutants are detected by known anti-CD59 antibodies, including the 2 variants present on the cell membrane. None of the 4 inhibits membrane attack complex (MAC) formation. CONCLUSIONS: All 4 mutants generate nonfunctional CD59, 2 are expressed as cell surface proteins that may function in non-MAC-related interactions and 2 are expressed only intracellularly. Distinct secretion of soluble CD59 may have also a role in disease pathogenesis.

15.
Glia ; 66(4): 801-812, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282769

RESUMEN

Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and ßIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.


Asunto(s)
Axones/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Glicoproteínas de Membrana/genética , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Ratas , Nervio Ciático/citología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Canales de Sodio/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
16.
Elife ; 62017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134616

RESUMEN

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal ßII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Nódulos de Ranvier/química , Canales de Sodio/análisis , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Ratones Noqueados
17.
Neuron ; 91(4): 824-836, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499083

RESUMEN

Myelination occurs selectively around neuronal axons to increase the efficiency and velocity of action potentials. While oligodendrocytes are capable of myelinating permissive structures in the absence of molecular cues, structurally permissive neuronal somata and dendrites remain unmyelinated. Utilizing a purified spinal cord neuron-oligodendrocyte myelinating co-culture system, we demonstrate that disruption of dynamic neuron-oligodendrocyte signaling by chemical cross-linking results in aberrant myelination of the somatodendritic compartment of neurons. We hypothesize that an inhibitory somatodendritic cue is necessary to prevent non-axonal myelination. Using next-generation sequencing and candidate profiling, we identify neuronal junction adhesion molecule 2 (JAM2) as an inhibitory myelin-guidance molecule. Taken together, our results demonstrate that the somatodendritic compartment directly inhibits myelination and suggest a model in which broadly indiscriminate myelination is tailored by inhibitory signaling to meet local myelination requirements.


Asunto(s)
Molécula B de Adhesión de Unión/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Técnicas de Cocultivo , Molécula B de Adhesión de Unión/biosíntesis , Molécula B de Adhesión de Unión/genética , Ratones , Ratones Noqueados , Vaina de Mielina/ultraestructura , Oligodendroglía/ultraestructura , Cultivo Primario de Células , Ratas , Médula Espinal/fisiología , Médula Espinal/ultraestructura
18.
Glia ; 64(7): 1227-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27143444

RESUMEN

Primary cultures of mixed neuron and Schwann cells prepared from dorsal root ganglia (DRG) are extensively used as a model to study myelination. These dissociated DRG cultures have the particular advantage of bypassing the difficulty in purifying mouse Schwann cells, which is often required when using mutant mice. However, the drawback of this experimental system is that it yields low amounts of myelin. Here we report a simple and efficient method to enhance myelination in vitro. We show that the addition of heparin or low molecular weight heparin to mixed DRG cultures markedly increases Schwann cells myelination. The myelin promoting activity of heparin results from specific inhibition of the soluble immunoglobulin (Ig)-containing isoforms of neuregulin 1 (i.e., NRG1 types I and II) that negatively regulates myelination. Heparin supplement provides a robust and reproducible method to increase myelination in a simple and commonly used culture system. GLIA 2016;64:1227-1234.


Asunto(s)
Fibrinolíticos/farmacología , Heparina/farmacología , Vaina de Mielina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurregulina-1/metabolismo , Células de Schwann/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Especificidad de la Especie
19.
Brain ; 138(Pt 9): 2521-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26179919

RESUMEN

Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.


Asunto(s)
Mutación/genética , Glicoproteína Asociada a Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Adulto , Conexinas/genética , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Salud de la Familia , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteína Proteolipídica de la Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Transporte de Proteínas/genética , Proteómica , Proteínas S100/metabolismo , Nervio Sural/patología , Adulto Joven
20.
J Cell Sci ; 128(13): 2293-302, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26002055

RESUMEN

Myelin comprises a compactly stacked massive surface area of protein-poor thick membrane that insulates axons to allow fast signal propagation. Increasing levels of the myelin protein plasmolipin (PLLP) were correlated with post-natal myelination; however, its function is unknown. Here, the intracellular localization and dynamics of PLLP were characterized in primary glial and cultured cells using fluorescently labeled PLLP and antibodies against PLLP. PLLP localized to and recycled between the plasma membrane and the Golgi complex. In the Golgi complex, PLLP forms oligomers based on fluorescence resonance energy transfer (FRET) analyses. PLLP oligomers blocked Golgi to plasma membrane transport of the secretory protein vesicular stomatitis virus G protein (VSVG), but not of a VSVG mutant with an elongated transmembrane domain. Laurdan staining analysis showed that this block is associated with PLLP-induced proliferation of liquid-ordered membranes. These findings show the capacity of PLLP to assemble potential myelin membrane precursor domains at the Golgi complex through its oligomerization and ability to attract liquid-ordered lipids. These data support a model in which PLLP functions in myelin biogenesis through organization of myelin liquid-ordered membranes in the Golgi complex.


Asunto(s)
Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Vaina de Mielina/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Multimerización de Proteína , Proteolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Perros , Endocitosis , Espacio Intracelular/metabolismo , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...