Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 59(14): 3861-75, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24957596

RESUMEN

Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without cables served as a ground truth. The 3D root mean square deviation between the simulated data set with and without cables could be reduced for 96% of the simulated cases by an average of 37% (min -9%, max 73%) when using the first pass correction method. In addition, image quality improvement is demonstrated for clinical whole heart C-arm CT data sets when the cable removal algorithm was applied.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Metales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...