Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37112720

RESUMEN

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.

2.
Viruses ; 14(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35632800

RESUMEN

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Pollos , Cricetinae , Modelos Animales de Enfermedad , Hurones , Ratones , Ratones Endogámicos BALB C , Conejos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología
3.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35062757

RESUMEN

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

4.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35025110

RESUMEN

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...