Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Dermatol ; 33(4): e15079, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38654506

RESUMEN

Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.


Asunto(s)
Moléculas de Adhesión Celular , Dermatitis Atópica , Proteómica , Psoriasis , Dermatitis Atópica/metabolismo , Humanos , Psoriasis/metabolismo , Proteómica/métodos , Moléculas de Adhesión Celular/metabolismo , Adulto , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/metabolismo , Espectrometría de Masas en Tándem , Piel/metabolismo , Análisis de Componente Principal , Estudios de Casos y Controles
2.
Sci Rep ; 14(1): 4303, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383756

RESUMEN

The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia/genética , Ciclo Celular , División Celular , Epigénesis Genética , Neoplasias Encefálicas/genética , Proliferación Celular , Proteína-Arginina N-Metiltransferasas/metabolismo
3.
PLoS Comput Biol ; 19(9): e1011374, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713666

RESUMEN

It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.


Asunto(s)
Vacunas contra el Cáncer , Mieloma Múltiple , Humanos , Redes y Vías Metabólicas , Algoritmos , Ciclo Celular
4.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506952

RESUMEN

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Glutamina/metabolismo , Regulación hacia Arriba
5.
Genes (Basel) ; 14(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107585

RESUMEN

Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.


Asunto(s)
Síndrome de Wolfram , Ratas , Animales , Síndrome de Wolfram/genética , Sistema Renina-Angiotensina/genética , Liraglutida/farmacología , Receptores de Angiotensina/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
6.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077504

RESUMEN

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Asunto(s)
Hipotermia Inducida , Hipotermia , Daño por Reperfusión , Frío , Humanos , Hipoxia
7.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35448256

RESUMEN

Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.


Asunto(s)
Antineoplásicos , Xantenos , Animales , Antineoplásicos/farmacología , Bioensayo , Supervivencia Celular , Mamíferos/metabolismo , Oxazinas , Xantenos/metabolismo , Xantenos/farmacología
8.
Cell Rep ; 38(5): 110320, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108535

RESUMEN

The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias/metabolismo , Oxígeno/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Ciclo del Ácido Cítrico/fisiología , Humanos , Mitocondrias/metabolismo , Prolina/metabolismo , Microambiente Tumoral , delta-1-Pirrolina-5-Carboxilato Reductasa
9.
Brain Sci ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072341

RESUMEN

C57BL/6NTac (Bl6) and 129S6/SvEvTac (129Sv) mice display different coping strategies in stressful conditions. Our aim was to evaluate biomarkers related to different adaptation strategies in the brain of male 129Sv and Bl6 mice. We focused on signaling pathways related to the dopamine (DA) system, N-methyl-D-aspartate (NMDA) receptor and epidermal growth factor (EGF) family, shown as the key players in behavioral adaptation. Mice from Bl6 and 129Sv lines were divided into either home cage controls (HCC group) or exposed to repeated motility testing and treated with saline for 11 days (RMT group). Distinct stress responses were reflected in severe body weight loss in 129Sv and the increased exploratory behavior in Bl6 mice. Besides that, amphetamine caused significantly stronger motor stimulation in Bl6. Together with the results from gene expression (particularly Maob), this study supports higher baseline activity of DA system in Bl6. Interestingly, the adaptation is reflected with opposite changes of DA markers in dorsal and ventral striatum. In forebrain, stress increased the gene expressions of Egf-Erbb1 and Nrg1/Nrg2-Erbb4 pathways more clearly in 129Sv, whereas the corresponding proteins were significantly elevated in Bl6. We suggest that not only inhibited activity of the DA system, but also reduced activity of EGF family and NMDA receptor signaling underlies higher susceptibility to stress in 129Sv. Altogether, this study underlines the better suitability of 129Sv for modelling neuropsychiatric disorders than Bl6.

10.
Brain Sci ; 11(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805312

RESUMEN

The Mediodorsal (MD) thalamus that represents a fundamental subcortical relay has been underrepresented in the studies focusing on the molecular changes in the brains of subjects with alcohol use disorder (AUD). In the current study, MD thalamic regions from AUD subjects and controls were analyzed with Affymetrix Clariom S human microarray. Long-term alcohol use induced a significant (FDR ≤ 0.05) upregulation of 2802 transcripts and downregulation of 1893 genes in the MD thalamus of AUD subjects. A significant upregulation of GRIN1 (glutamate receptor NMDA type 1) and FTO (alpha-ketoglutarate dependent dioxygenase) was confirmed in western blot analysis. Immunohistochemical staining revealed similar heterogenous distribution of GRIN1 in the thalamic nuclei of both AUD and control subjects. The most prevalent functional categories of upregulated genes were related to glutamatergic and GABAergic neurotransmission, cellular metabolism, and neurodevelopment. The prevalent gene cluster among down-regulated genes was immune system mediators. Forty-two differentially expressed genes, including FTO, ADH1B, DRD2, CADM2, TCF4, GCKR, DPP6, MAPT and CHRH1, have been shown to have strong associations (FDR p < 10-8) with AUD or/and alcohol use phenotypes in recent GWA studies. Despite a small number of subjects, we were able to detect robust molecular changes in the mediodorsal thalamus caused by alcohol emphasizing the importance of deeper brain structures such as diencephalon, in the development of AUD-related dysregulation of neurocircuitry.

11.
J Am Heart Assoc ; 7(19): e009565, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30371303

RESUMEN

Background Lymphatic vessels interconnect with blood vessels to form an elaborate system that aids in the control of tissue pressure and edema formation. Although the lymphatic system has been known to exist in a heart, little is known about the role the cardiac lymphatic system plays in the development of heart failure. Methods and Results Mice (C57 BL /6J, male, 8 to 12 weeks of age) were subjected to either myocardial ischemia or myocardial ischemia and reperfusion for up to 28 days. Analysis revealed that both models increased the protein expression of vascular endothelial growth factor C and VEGF receptor 3 starting at 1 day after the onset of injury, whereas a significant increase in lymphatic vessel density was observed starting at 3 days. Further studies aimed to determine the consequences of inhibiting the endogenous lymphangiogenesis response on the development of heart failure. Using 2 different pharmacological approaches, we found that inhibiting VEGF receptor 3 with MAZ -51 and blocking endogenous vascular endothelial growth factor C with a neutralizing antibody blunted the increase in lymphatic vessel density, blunted lymphatic transport, increased inflammation, increased edema, and increased cardiac dysfunction. Subsequent studies revealed that augmentation of the endogenous lymphangiogenesis response with vascular endothelial growth factor C treatment reduced inflammation, reduced edema, and improved cardiac dysfunction. Conclusions These results suggest that the endogenous lymphangiogenesis response plays an adaptive role in the development of ischemic-induced heart failure and supports the emerging concept that therapeutic lymphangiogenesis is a promising new approach for the treatment of cardiovascular disease.


Asunto(s)
Insuficiencia Cardíaca/etiología , Linfangiogénesis/fisiología , Vasos Linfáticos/patología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Remodelación Ventricular/fisiología , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/patología
12.
Free Radic Biol Med ; 121: 157-168, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29704622

RESUMEN

Mild hypothermia (32 °C) is routinely used in medical practice to alleviate hypoxic ischemic damage, however, the mechanisms that underlie its protective effects remain uncertain. Using a systems approach based on genome-wide expression screens, reporter assays and biochemical studies, we find that cellular hypothermia response is associated with the augmentation of major stress-inducible transcription factors Nrf2 and HIF1Α affecting the antioxidant system and hypoxia response pathways, respectively. At the same time, NF-κB, a transcription factor involved in the control of immune and inflammatory responses, was not induced by hypothermia. Furthermore, mild hypothermia did not trigger unfolded protein response. Lower temperatures (27 °C and 22 °C) did not activate Nrf2 and HIF1A pathways as efficiently as mild hypothermia. Current findings are discussed in the context of the thermodynamic hypothesis of therapeutic hypothermia. We argue that the therapeutic effects are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component). We argue that systems coping with cellular stressors are plausible targets of therapeutic hypothermia and deserve more attention in clinical hypothermia research.


Asunto(s)
Biomarcadores/análisis , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Hipotermia Inducida/métodos , Factor 2 Relacionado con NF-E2/fisiología , Estrés Fisiológico , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Perfilación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Noqueados
13.
Front Mol Neurosci ; 11: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434535

RESUMEN

Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ). IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5'-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC) of schizophrenic patients (n = 36) and control subjects (n = 36). Uniform 5'-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase) and the NTM 1b isoform transcript (1.47-fold increase) in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain circuit disorganization in neuropsychiatric disorders, such as schizophrenia. In the light of previously published data, we suggest that increased level of NEGR1 in the frontal cortex may serve as molecular marker for a wider spectrum of psychiatric conditions.

14.
J Mol Cell Cardiol ; 116: 29-40, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29408195

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) is an important regulator of mitochondrial bioenergetics, but its role in regulating mitochondrial biogenesis is not well understood. Using both genetic and pharmacological approaches, we sought to determine if H2S levels directly influenced cardiac mitochondrial content. RESULTS: Mice deficient in the H2S-producing enzyme, cystathionine γ-lyase (CSE KO) displayed diminished cardiac mitochondrial content when compared to wild-type hearts. In contrast, mice overexpressing CSE (CSE Tg) and mice supplemented with the orally active H2S-releasing prodrug, SG-1002, displayed enhanced cardiac mitochondrial content. Additional analysis revealed that cardiac H2S levels influenced the nuclear localization and transcriptional activity of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) with higher levels having a positive influence and lower levels having a negative influence. Studies aimed at evaluating the underlying mechanisms found that H2S required AMP-activated protein kinase (AMPK) to induce PGC1α signaling and mitochondrial biogenesis. Finally, we found that restoring H2S levels with SG-1002 in the setting of heart failure increased cardiac mitochondrial content, improved mitochondrial respiration, improved ATP production efficiency, and improved cardiac function. CONCLUSIONS: Together, these results suggest that hydrogen sulfide is an important regulator of cardiac mitochondrial content and establishes that exogenous hydrogen sulfide can induce mitochondrial biogenesis via an AMPK-PGC1α signaling cascade.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Sulfuro de Hidrógeno/farmacología , Mitocondrias Cardíacas/metabolismo , Biogénesis de Organelos , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Activación Enzimática/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Azufre/metabolismo
15.
Front Neurosci ; 11: 38, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210208

RESUMEN

IgLON family is composed of five genes: Lsamp, Ntm, Opcml, Negr1, and Iglon5; encoding for five highly homologous neural adhesion proteins that regulate neurite outgrowth and synapse formation. In the current study we performed in silico analysis revealing that Ntm and Opcml display similar genomic structure as previously reported for Lsamp, characterized by two alternative promotors 1a and 1b. Negr1 and Iglon5 transcripts have uniform 5' region, suggesting single promoter. Iglon5, the recently characterized family member, shares high level of conservation and structural qualities characteristic to IgLON family such as N-terminal signal peptide, three Ig domains, and GPI anchor binding site. By using custom 5'-isoform-specific TaqMan gene-expression assay, we demonstrated heterogeneous expression of IgLON transcripts in different areas of mouse brain and several-fold lower expression in selected tissues outside central nervous system. As an example, the expression of IgLON transcripts in urogenital and reproductive system is in line with repeated reports of urogenital tumors accompanied by mutations in IgLON genes. Considering the high levels of intra-family homology shared by IgLONs, we investigated potential compensatory effects at the level of IgLON isoforms in the brains of mice deficient of one or two family members. We found that the lack of IgLONs is not compensated by a systematic quantitative increase of the other family members. On the contrary, the expression of Ntm 1a transcript and NEGR1 protein was significantly reduced in the frontal cortex of Lsamp-deficient mice suggesting that the expression patterns within IgLON family are balanced coherently. The actions of individual IgLONs, however, can be antagonistic as demonstrated by differential expression of Syp in deletion mutants of IgLONs. In conclusion, we show that the genomic twin-promoter structure has impact on both anatomical distribution and intra-family interactions of IgLON family members. Remarkable variety in the activity levels of 1a and 1b promoters both in the brain and in other tissues, suggests complex functional regulation of IgLONs by alternative signal peptides driven by 1a and 1b promoters.

16.
Behav Brain Res ; 244: 90-9, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396150

RESUMEN

Immunohistological studies suggest abundant expression of Wfs1 protein in neurons and nerve fibers that lie in the vicinity of dopaminergic (DA-ergic) fibers and neurons. Therefore, we sought to characterize the function of DA-ergic system in Wfs1-deficient mice. In wild-type mice, amphetamine, an indirect agonist of DA, caused significant hyperlocomotion and increase in tissue DA levels in the dorsal and ventral striatum. Both effects of amphetamine were significantly blunted in homozygous Wfs1-deficient mice. Motor stimulation caused by apomorphine, a direct DA receptor agonist, was somewhat stronger in Wfs1-deficient mice compared to their wild-type littermates. However, apomorphine caused a similar reduction in levels of DA metabolites (3,4-dihydroxyphenylacetic acid and homovanillic acid) in the dorsal and ventral striatum in all genotypes. Behavioral sensitization to repeated treatment with amphetamine (2.5 mg/kg) was observed in wild-type, but not in Wfs1-deficient mice. The expression of DA transporter gene (Dat) mRNA was significantly lower in the midbrain of male and female homozygous mice compared to wild-type littermates. Altogether, the blunted effects of amphetamine and the reduced gene expression of DA transporter are probably indicative of an impaired functioning of the DA-ergic system in Wfs1-deficient mice.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/fisiología , Anfetamina/farmacología , Animales , Apomorfina/farmacología , Sensibilización del Sistema Nervioso Central/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Congénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Receptores de Dopamina D2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA