Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncol Rev ; 18: 1374513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707486

RESUMEN

Background: Malignant gliomas are known with poor prognosis and low rate of survival among brain tumors. Resection surgery is followed by chemotherapy and radiotherapy in treatment of gliomas which is known as the conventional treatment. However, this treatment method results in low survival rate. Vaccination has been suggested as a type of immunotherapy to increase survival rate of glioma patients. Different types of vaccines have been developed that are mainly classified in two groups including peptide vaccines and cell-based vaccines. However, there are still conflicts about which type of vaccines is more efficient for malignant glioma treatment. Methods: Phase Ⅰ/Ⅱ clinical trials which compared the efficacy and safety of various vaccines with conventional treatments were searched in databases through November 2022. Overall survival (OS) rate, progression free survival (PFS), and OS duration were used for calculation of pooled risk ratio (RR). In addition, fatigue, headache, nausea, diarrhea, and flu-like syndrome were used for evaluating the safety of vaccines therapy in glioma patients. Results: A total of twelve articles were included in the present meta-analysis. Comparison of OS rate between vaccinated groups and control groups who underwent only conventional treatments showed a significant increase in OS rate in vaccinated patients (I2 = 0%, RR = 11.17, 95% CI: 2.460-50.225). PFS rate was better in vaccinated glioma patients (I2 = 83%, RR = 2.87, 95% CI: 1.63-5.03). Assessment of safety demonstrated that skin reaction (I2 = 0.0%, RR = 3.654; 95% CI: 1.711-7.801, p-value = 0.0058) and flu-like syndrome were significantly more frequent adverse effects win vaccinated groups compared to the control group. Subgroup analysis also showed that vaccination leads to better OS duration in recurrent gliomas than primary gliomas, and in LGG than HGG (p-value = 0). On the other hand, personalized vaccines showed better OS duration than non-personalized vaccines (p-value = 0). Conclusion: Vaccination is a type of immunotherapy which shows promising efficacy in treatment of malignant glioma patients in terms of OS, PFS and duration of survival. In addition, AFTV, peptide, and dendritic cell-based vaccines are among the most efficient vaccines for gliomas. Personalized vaccines also showed considerable efficacy for glioma treatments.

2.
Ageing Res Rev ; 97: 102299, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604452

RESUMEN

Parkinson's disease is predominantly caused by dopaminergic neuron loss in the substantia nigra pars compacta and the accumulation of alpha-synuclein protein. Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, malfunctions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuroinflammation, are involved in the neurodegeneration process of Parkinson's disease, the precise mechanism by which all of these factors are triggered remains unknown. Typically, neurotoxic compounds such as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl 4-phenyl pyridinium (mpp+), paraquat, and maneb are used to Preclinical models of Parkinson's disease Ferulic acid is often referred to by its scientific name, 4-hydroxy-3-methoxycinnamic acid (C10H10O4), and is found naturally in cereals, fruits, vegetables, and bee products. This substance exhibits neuroprotective effects against Parkinson's disease because of its intriguing potential, which includes anti-inflammatory and antioxidant qualities. This review goes into additional detail about Parkinson's disease and the neuroprotective properties of ferulic acid that may help prevent the condition.


Asunto(s)
Ácidos Cumáricos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ácidos Cumáricos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Modelos Animales de Enfermedad
3.
Arch Oral Biol ; 159: 105878, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171058

RESUMEN

OBJECTIVE: We investigated the effects of molar tooth shortening on the mRNA expression of the AßPP/BACE1, BDNF/TrkB, and Bax/Bcl-2 signaling pathways in the Wistar male rat hippocampal regions. DESIGN: Four groups (n = 5 per group) of male Wistar rats (control, SRM (shortened right molar), SLM (shortened left molar), and SBM (shortened bilateral molar)) were used. RNA was isolated from the hippocampus and transformed into cDNA. Real-time quantitative PCR was used to evaluate the mRNA expression levels of AßPP, BACE1, Bax, Bcl-2, BDNF, and TrkB. RESULTS: Differential mRNA expression was observed in rat groups. SBM significantly upregulated the AßPP, BACE1, and Bax mRNA expressions, whereas the expression levels of Bcl-2, BDNF, and TrkB were decreased. SRM and SLM approximately had the same effect on the expression enhancement of AßPP, BACE1, and Bax; however, SRM was more effective than SLM in increasing the expression of these genes. CONCLUSIONS: Symmetrical molar teeth shortening affected the mRNA expression of AßPP and BACE1, which is related to learning and memory dysfunction.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Factor Neurotrófico Derivado del Encéfalo , Ratas , Masculino , Animales , Ratas Wistar , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , ARN Mensajero/metabolismo
4.
BMC Pharmacol Toxicol ; 24(1): 81, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129872

RESUMEN

BACKGROUND: Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway. METHODS: Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats. RESULTS: In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression. CONCLUSION: Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , MicroARNs , Ratas , Masculino , Animales , Ratas Wistar , Quercetina/farmacología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro
5.
Environ Res ; 232: 116302, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286125

RESUMEN

Neurogenesis is decreased in the absence of nerve growth factor (NGF). It would be beneficial to discover substances that stimulate neurogenesis without NGF, given the high molecular weight and brief half-life of NGF. This work aims to assess the neurogenesis of ginger extract (GE) combined with superparamagnetic iron oxide nanoparticles (SPIONs) without NGF. Based on our research, GE and SPIONs start neurogenesis before NGF. In comparison to the control group, GE and SPIONs dramatically reduced the length and quantity of neurites, according to statistical analysis. Our findings also indicated that SPIONs and ginger extract together had an additive impact on one another. The total number significantly increased with the addition of GE and nanoparticles. In comparison to NGF, the mixture of GE and nanoparticles significantly enhanced the total number of cells with neurites (by about 1.2-fold), the number of branching points (by about 1.8-fold), and the length of neurites. The difference between ginger extract and nanoparticles with NGF was significant (about 3.5-fold), particularly in the case of cells with one neurite. The results of this study point to the possibility of treating neurodegenerative disorders via the combination of GE and SPIONs without NGF.


Asunto(s)
Dextranos , Factor de Crecimiento Nervioso , Ratas , Animales , Células PC12 , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal , Nanopartículas Magnéticas de Óxido de Hierro
6.
Oral Dis ; 29(3): 1356-1366, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34862999

RESUMEN

OBJECTIVE: This study aimed to investigate the relationship between different patterns of molar crown loss and the association between symmetrical and asymmetrical shortening molar teeth with memory impairment. MATERIALS AND METHODS: Male Wistar rats were divided into four groups (n = 10) including control, SLM (shortened left molar), SRM (shortened right molar), and SBM (shortened bilateral molar) groups. Morris water maze (MWM) and passive avoidance test (PAT) were performed to assess spatial and fear memory, respectively. Besides, histological assessment of hippocampus and gingival tissues was done. RESULTS: In the MWM test, SBM and SLM groups had higher escape latency over training trials and spent less time in the target quadrant in the probe trial (p < 0.01). In the PAT, step-through latency was significantly reduced in three groups, and time spent in the dark compartment increased in SBM (p < 0.01) and SLM (p < 0.05) groups. In addition, each teeth shortening group indicated a reduction in density (p < 0.01) and thickness layer (p < 0.05) of pyramidal cells. Gingival was normal after shortening of the molar crown. CONCLUSIONS: Different patterns of molar teeth shortening induced learning and memory impairment; however, symmetrical molar teeth shortening has more effects on memory impairment.


Asunto(s)
Aprendizaje , Trastornos de la Memoria , Ratas , Animales , Masculino , Ratas Wistar , Trastornos de la Memoria/etiología , Diente Molar
7.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559186

RESUMEN

Regeneration of the damaged neurons in neurological disorders and returning their activities are two of the main purposes of neuromedicine. Combination use of specific nanoformulations with a therapeutic compound could be a good candidate for neuroregeneration applications. Accordingly, this research aims to utilize the combination of curcumin, as a neurogenesis agent, with dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate their effects on PC12 cellsʹ neuronal branching morphogenesis in the absence of nerve growth factor. Therefore, the effects of each component alone and in combination form on the cytotoxicity, neurogenesis, and neural branching morphogenesis were evaluated using MTT assay, immunofluorescence staining, and inverted microscopy, respectively. Results confirmed the effectiveness of the biocompatible iron oxide nanoparticles (with a size of about 100 nm) in improving the percentage of neural branching (p < 0.01) in PC12 cells. In addition, the combination use of these nanoparticles with curcumin could enhance the effect of curcumin on neurogenesis (p < 0.01). These results suggest that SPIONs in combination with curcumin could act as an inducing factor on PC12 neurogenesis in the absence of nerve growth factor and could offer a novel therapeutic approach to the treatment of neurodegenerative diseases.

8.
Bioimpacts ; 12(4): 295-299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975208

RESUMEN

Despite the progress made in the diagnosis and treatment of cancer, it has remained the second cause of death in industrial countries. Cancer is a complex multifaceted disease with unique genomic and proteomic hallmarks. Optogenetics is a biological approach, in which the light-sensitive protein modules in combination with effector proteins that trigger reversibly fundamental cell functions without producing a long-term effect. The technology was first used to address some key issues in neurology. Later on, it was also used for other diseases such as cancer. In the case of cancer, there exist several signaling pathways with key proteins that are involved in the initiation and/or progression of cancer. Such aberrantly expressed proteins and the related signaling pathways need to be carefully investigated in terms of cancer diagnosis and treatment, which can be managed with optogenetic tools. Notably, optogenetics systems offer some advantages compared to the traditional methods, including spatial-temporal control of protein or gene expression, cost-effective and fewer off-target side effects, and reversibility potential. Such noticeable features make this technology a unique drug-free approach for diagnosis and treatment of cancer. It can be used to control tumor cells, which is a favorable technique to investigate the heterogeneous and complex features of cancerous cells. Remarkably, optogenetics approaches can provide us with outstanding tool to extend our understanding of how cells perceive, respond, and behave in meeting with complex signals, particularly in terms of cancer evasion from the anticancer immune system functions.

9.
Front Pharmacol ; 13: 870861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422706

RESUMEN

GABAB receptors control neuronal excitability via slow and prolonged inhibition in the central nervous system. One important function of GABAB receptors under physiological condition is to prevent neurons from shifting into an overexcitation state which can lead to excitotoxic death. However, under ischemic conditions, GABAB receptors are downregulated, fostering over-excitation and excitotoxicity. One mechanism downregulating GABAB receptors is mediated via the interaction with the endoplasmic reticulum (ER) stress-induced transcription factor CHOP. In this study, we investigated the hypothesis that preventing the interaction of CHOP with GABAB receptors after an ischemic insult restores normal expression of GABAB receptors and reduces neuronal death. For this, we designed an interfering peptide (R2-Pep) that restored the CHOP-induced downregulation of cell surface GABAB receptors in cultured cortical neurons subjected to oxygen and glucose deprivation (OGD). Administration of R2-Pep after OGD restored normal cell surface expression of GABAB receptors as well as GABAB receptor-mediated inhibition. As a result, R2-Pep reduced enhanced neuronal activity and inhibited progressive neuronal death in OGD stressed cultures. Thus, targeting diseases relevant protein-protein interactions might be a promising strategy for developing highly specific novel therapeutics.

10.
J Nanobiotechnology ; 19(1): 327, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663344

RESUMEN

Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.


Asunto(s)
Encéfalo/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Quercetina/farmacología , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Humanos , Hierro/metabolismo , Sobrecarga de Hierro , Ratones , Enfermedades Neurodegenerativas , Ratas
11.
BMC Res Notes ; 14(1): 369, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551814

RESUMEN

OBJECTIVE: Papillary Thyroid carcinoma accounts for more than 60% of adult thyroid carcinomas. Finding a helpful marker is vital to determine the correct treatment approach. The present study was aimed to evaluate the expression of the B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) gene in papillary carcinoma, adenoma, and adjacent healthy thyroid tissues. Pathology blocks of thyroid tissues at the pathology department of patients who have undergone thyroid surgery between 2015 and 2019 were examined; papillary carcinoma, adenoma, and healthy tissues were selected and sectioned. Total RNA was extracted, and the relative expression level of the BMI-1 gene was examined using the Real-Time qPCR method. RESULTS: In the papillary and adenoma tissues, BMI-1 was overexpressed (1.047-fold and 1.042-fold) in comparison to healthy tissues (p < 0.05 for both comparisons). However, no statistically significant differences were observed between adenoma and papillary carcinoma tissues regarding BMI-1 gene expression. This study demonstrated a new biomarker for thyroid malignancies and found that the mRNA levels of the BMI-1 gene were higher in tumor tissues compared with healthy tissues. Further studies are needed to evaluate the BMI1 gene expression in other thyroid cancers.


Asunto(s)
Adenoma , Carcinoma Papilar , Neoplasias de la Tiroides , Adenoma/genética , Animales , Índice de Masa Corporal , Carcinoma Papilar/genética , Humanos , Ratones , Proto-Oncogenes Mas , Proto-Oncogenes , Neoplasias de la Tiroides/genética
12.
Biochem Biophys Res Commun ; 566: 204-210, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34214757

RESUMEN

Different exercise patterns, neurotransmitters, and some genes have numerous effects on learning and memory. This research aims to investigate the long-term effects of submaximal aerobic exercise on spatial memory (SM), passive avoidance learning (PAL), levels of serum relaxin-3, gamma-aminobutyric acid (GABA), RLN3 gene, and glutamic acid decarboxylase (GAD65/67 genes) in the brainstem of adult male Wistar rats. Fifty male Wistar rats were randomly divided into five groups: aerobic exercise groups, performed on a treadmill running (TR), for 5 weeks (Ex5, n = 10), 10 weeks (Ex10, n = 10), involuntary running wheel group for 5 weeks (IRW5, n = 10), sham (Sh, n = 10) and control (Co, n = 10). Consequently, SM, PAL, serum relaxin-3, GABA, and GAD65/67 and RLN3 genes were measured by ELISA and PCR. Ex5, Ex10 and IRW5 improved significantly SM (p ≤ 0.05), PAL (p ≤ 0.001) and decreased significantly relaxin-3 (p ≤ 0.001). RLN3 in the brain also decreased. However, it was not significant. GABA and GAD65/GAD67 increased significantly (p ≤ 0.05) in Ex5, Ex10 compared to Sh and Co. Aerobic exercise enhanced SM and PAL in Ex compared to Co and Sh. However, duration and type of exercise affected the level of enhancement. The serum relaxin-3 and RLN3 gene displayed reverse functions compared to GABA and GAD65/67 genes in Ex. Therefore, the changes of neurotransmitters in serum relaxin-3, GABA, and their genes: RLN3 and GAD65/67 respectively, influenced learning and memory meaningfully.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Relaxina/genética , Ácido gamma-Aminobutírico/genética , Animales , Reacción de Prevención , Tronco Encefálico/fisiología , Masculino , Proteínas del Tejido Nervioso/sangre , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Relaxina/sangre , Memoria Espacial , Ácido gamma-Aminobutírico/sangre
13.
Arch Oral Biol ; 127: 105138, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33940515

RESUMEN

OBJECTIVE: In the current study, we aimed to investigate the expression profile of TrkA, TrkB, TrkC, and p75NTR neurotrophin receptors because of their roles in the functional differentiation of human exfoliated deciduous teeth (SHED) cells into neural-like cells before and after differentiation of SHED cells into neural-like cells. DESIGN: Total RNAs isolated from dental pulp tissue, SHED cells, and neural-like cells were reverse transcribed into complementary DNA. Neurotrophin receptor expression at mRNA and protein levels were compared in these three cell types by means of real-time PCR and western blot methods. RESULTS: TrkA mRNA increased (713.6 ± 251.5) significantly (p < 0.01) in neural-like cells difference from SHED and TrkB mRNA enhanced to 3618 times in these cells. The expression pattern of TrkC was very similar to the pattern of TrkA, and B. p75NTR mRNA increased 41.99 ± 21.61 fold in neural-like cells and 9.805 ± 4.06 fold in SHED cells. Almost the same pattern was observed for the expression of these receptors at the protein levels. Alterations with different grades and trends in neurotrophin receptors mRNA and protein expression levels were observed in these cells. CONCLUSION: Neurotrophin receptors are important in the existence and differentiation of SHED cells into neuron cells. Therefore, because of the neurogenic potential and accessibility of SHED cells, derived cells from SHED cells can be distinguished as an ideal source for tissue engineering.


Asunto(s)
Receptor trkA , Receptor trkC , Diferenciación Celular , Expresión Génica , Humanos , Receptor trkA/genética , Receptor trkC/genética , Receptores de Factor de Crecimiento Nervioso/genética , Diente Primario
14.
Sci Rep ; 11(1): 8618, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883592

RESUMEN

Quercetin (QC) is a dietary bioflavonoid that can be conjugated with nanoparticles to facilitate its brain bioavailability. We previously showed that quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) reduced the level of blood glucose in diabetic rats. Glucose transporters (GLUTs), insulin-like growth factor-1 (IGF-1), and microRNA-29 (miR-29) play a critical role in brain glucose homeostasis. In the current study, we examined the effects of QCSPION on the expression of glucose metabolism-related genes, and the miR-29 family as a candidate regulator of glucose handling in the hippocampus of diabetic rats. Our in silico analyses introduce the miR-29 family as potential regulators of glucose transporters and IGF-1 genes. The expression level of the miR-29 family, IGF-1, GLUT1, GLUT2, GLUT3, and GLUT4 were measured by qPCR. Our results indicate that diabetes significantly results in upregulation of the miR-29 family and downregulation of the GLUT1, 2, 3, 4, and IGF-1 genes. Interestingly, QCSPIONs reduced miR-29 family expression and subsequently enhanced GLUT1, 2, 3, 4, and IGF-1expression. In conclusion, our findings suggest that QCSPION could regulate the expression of the miR-29 family, which in turn increases the expression of glucose transporters and IGF-1, thereby reducing diabetic complications.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa/genética , Glucosa/metabolismo , Hipocampo/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , MicroARNs/genética , Quercetina/farmacología , Animales , Diabetes Mellitus Experimental/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Proteínas Facilitadoras del Transporte de la Glucosa/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Arch Oral Biol ; 125: 105088, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33640557

RESUMEN

OBJECTIVE: We aimed to assess the effect of quercetin as one of the most common polyphenols with anti-inflammatory and antioxidant properties on expression levels of catalase (CAT), superoxide dismutase 1 (SOD1), and glutathione peroxidase 1 (GPX1), involved in the detoxification of reactive oxygen species (ROS), and histology of dental pulp in streptozotocin-diabetic rats. DESIGN: Type 1 diabetes mellitus (T1DM) was induced by intraperitoneal injection of streptozotocin in adult male Wistar rats. Animals (n = 24) were equally distributed into control, diabetes, and diabetes treated with quercetin groups. Rats were gavaged daily with quercetin (25 mg/kg) for forty days. To measure the mRNA levels of antioxidant genes, quantitate real-time PCR was applied. The oxidative stress parameters such as total antioxidant capacity (TAC) and histopathological assessments were performed. RESULTS: A significant increase in the relative quantification mRNA levels of SOD1, CAT, GPX1 was detected in diabetic rat dental pulp. Besides, persistent hyperglycemia led to the enhancement of TAC level and degeneration of connective tissue of the dental pulp. Interestingly, quercetin normalized the expression mRNA levels of CAT, SOD1, GPX1 to near the normal level. Moreover, quercetin treatment normalized TAC levels. CONCLUSIONS: Because of the crucial role of antioxidants in diabetic complications, the findings of the current study presented a molecular basis for the protective effect of quercetin on dental pulp in diabetic conditions.


Asunto(s)
Diabetes Mellitus Experimental , Quercetina , Animales , Antioxidantes , Catalasa/metabolismo , Pulpa Dental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Estrés Oxidativo , Quercetina/farmacología , Ratas , Ratas Wistar , Estreptozocina , Superóxido Dismutasa/metabolismo
16.
Sci Rep ; 10(1): 15957, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994439

RESUMEN

Oxidative stress is one of the earliest defects involved in the development of diabetes-induced cognitive impairment. Nrf2 is the master regulator of the cellular antioxidant system can be regulated by some microRNAs. The study aimed to evaluate the effects of quercetin (QC) and quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on Nrf2-controlled antioxidant genes through the redox-sensitive miR-27a. Expression levels of miR-27a, Nrf2, SOD1, GPX1, and CAT were measured by quantitative real-time PCR. Moreover, the oxidative stress parameters including total antioxidant capacity (TAC) and histological alterations were investigated. The expression level of miR-27a was significantly up-regulated in diabetic rats. While expression levels of Nrf2, SOD1, GPX1, and CAT were significantly down-regulated under diabetic condition. Interestingly, QCSPIONs decreased expression level of miR-27a and subsequently enhanced the expression levels of Nrf2, SOD1, and CAT to the control level. No significant difference was observed in the expression level of GPX1. Besides, QC in pure and especially conjugated form was able to normalize TAC and regenerate pathological lesions in STZ-diabetic rats. Our result demonstrates that QCSPIONs as an effective combined therapy can decrease miR-27a expression, which in turn increases the Nrf2 expression and responsive antioxidant genes, resulting in improvement of memory dysfunction in diabetic rats.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Memoria/efectos de los fármacos , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Quercetina/administración & dosificación , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Expresión Génica , Glutatión Peroxidasa/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Masculino , Memoria/fisiología , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quercetina/química , Ratas , Ratas Wistar , Superóxido Dismutasa-1/metabolismo , Glutatión Peroxidasa GPX1
17.
Sci Rep ; 10(1): 15070, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934245

RESUMEN

Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) have an ameliorative effect on diabetes-induced memory impairment. The current study aimed to compare the effect of quercetin (QC) and QCSPIONs on inflammation-related microRNAs and NF-κB signaling pathways in the hippocampus of diabetic rats. The expression levels of miR-146a, miR-9, NF-κB, and NF-κB-related downstream genes, including TNF-α, BACE1, AßPP, Bax, and Bcl-2 were measured using quantitative real-time PCR. To determine the NF-κB activity, immunohistochemical expression of NF-κB/p65 phosphorylation was employed. Computer simulated docking analysis also performed to find the QC target proteins involved in the NF-κB pathway. Results indicate that diabetes significantly upregulated the expression levels of miR-146a, miR-9, TNF-α, NF-κB, and subsequently AßPP, BACE1, and Bax. Expression analysis shows that QCSPIONs are more effective than pure QC in reducing the expression of miR-9. Interestingly, QCSPIONs reduce the pathological activity of NF-κB and subsequently normalize BACE1, AßPP, and the ratio of Bax/Bcl-2 expression better than pure QC. Comparative docking analyses also show the stronger binding affinity of QC to IKK and BACE1 proteins compared to specific inhibitors of each protein. In conclusion, our study suggests the potent efficacy of QCSPIONs as a promising drug delivery system in memory improvement through targeting the NF-κB pathway.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hipocampo/metabolismo , Aprendizaje/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Memoria/efectos de los fármacos , MicroARNs , FN-kappa B , Quercetina , Transducción de Señal/efectos de los fármacos , Animales , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Quercetina/química , Quercetina/farmacología , Ratas , Ratas Wistar
18.
Iran J Basic Med Sci ; 23(7): 886-893, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32774810

RESUMEN

OBJECTIVES: Chemotherapies used to treat colon cancer might often fail due to the emergence of chemoresistance and side effects. Escherichia coli Nissle 1917 (EcN) is a beneficial probiotic, whose molecular mechanisms in the prevention of colon cancer are yet to be fully understood. The present study assessed the anti-cancer effects of EcN treatments in human colorectal cancer, HT-29 cell line, with the analysis of related mechanisms. MATERIALS AND METHODS: The co-culture conditioned-media (CM) of EcN with adenocarcinoma HT-29 cells and heat-inactivated bacteria (HIB) were applied for the treatment of the HT-29 cells. To study the inhibition potential of CM and HIB on cancer cells, various cellular/molecular analyses were implemented, including DAPI-staining and DNA ladder assays, flow cytometry and Real-time quantitative PCR (qPCR), as well as Western blotting analyses. RESULTS: Our results indicated that EcN could elicit apoptotic impacts on the colon cancer HT-29 cells by up-regulating PTEN and Bax and down-regulating AKT1 and Bcl-xL genes. CONCLUSION: Based on our findings, EcN is proposed as a useful supplemental probiotic treatment against colon cancer.

19.
Bioimpacts ; 10(3): 187-193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793441

RESUMEN

Introduction: Colorectal cancer (CRC) is one of the main health burden worldwide, which can cause major economic and physiological problems along with relatively high rate of mortality. It is important to develop new methods for the localized delivery of recombinant protein therapeutics, in large part due to the failure of conventional therapies in most cases. Since E. coli Nissle 1917 (EcN) does not produce any virulence factors, here we used these bacteria with the light-activated promoter system to deliver therapeutic agents in the desired location and time. Methods: In this study, Staphylococcus aureus alpha hemolysin (SAH), after codon usage optimization, was cloned into blue light activating vector (pDawn) and transferred to EcN strain. Then, the functionality and cytotoxicity of secreted alpha hemolysin was evaluated in the SW480 colon cancer cell line by using different experiments, including blood agar test, flow cytometry analysis, and DAPI staining. Results: Our findings revealed that EcN can produce functional SAH under the blue light irradiation against SW480 cancer cells. Moreover, cytotoxicity assays confirmed the dose- and time-dependent toxicity of this payload (SAH) against SW480 cancer cells. Conclusion: Based on our results, EcN is proposed as an appropriate light-activated vehicle for delivery of anticancer agents to the target cancer cells/tissues.

20.
Ageing Res Rev ; 62: 101095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32535272

RESUMEN

Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Diabetes Mellitus/tratamiento farmacológico , Medicina de Hierbas , Humanos , Obesidad/tratamiento farmacológico , Quercetina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA