Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 52(2): 208-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962675

RESUMEN

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.


Asunto(s)
Estenosis de la Válvula Aórtica , Dietilestilbestrol/análogos & derivados , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Stents , Diseño de Prótesis , Resultado del Tratamiento
3.
Ann Biomed Eng ; 50(7): 805-815, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35428905

RESUMEN

Accurate reconstruction of transcatheter aortic valve (TAV) geometries and other stented cardiac devices from computed tomography (CT) images is challenging, mainly associated with blooming artifacts caused by the metallic stents. In addition, bioprosthetic leaflets of TAVs are difficult to segment due to the low signal strengths of the tissues. This paper describes a method that exploits the known device geometry and uses an image registration-based reconstruction method to accurately recover the in vivo stent and leaflet geometries from patient-specific CT images. Error analyses have shown that the geometric error of the stent reconstruction is around 0.1mm, lower than 1/3 of the stent width or most of the CT scan resolutions. Moreover, the method only requires a few human inputs and is robust to input biases. The geometry and the residual stress of the leaflets can be subsequently computed using finite element analysis (FEA) with displacement boundary conditions derived from the registration. Finally, the stress distribution in self-expandable stents can be reasonably estimated by an FEA-based simulation. This method can be used in pre-surgical planning for TAV-in-TAV procedures or for in vivo assessment of surgical outcomes from post-procedural CT scans. It can also be used to reconstruct other medical devices such as coronary stents.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Humanos , Diseño de Prótesis , Stents , Tomografía Computarizada por Rayos X
5.
Struct Heart ; 6(2): 100032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37273734

RESUMEN

Transcatheter aortic valve replacement (TAVR) is a rapidly growing field enabling replacement of diseased aortic valves without the need for open heart surgery. However, due to the nature of the procedure and nonremoval of the diseased tissue, there are rates of complications ranging from tissue rupture and coronary obstruction to paravalvular leak, valve thrombosis, and permanent pacemaker implantation. In recent years, computational modeling has shown a great deal of promise in its capabilities to understand the biomechanical implications of TAVR as well as help preoperatively predict risks inherent to device-patient-specific anatomy biomechanical interaction. This includes intricate replication of stent and leaflet designs and tested and validated simulated deployments with structural and fluid mechanical simulations. This review outlines current biomechanical understanding of device-related complications from TAVR and related predictive strategies using computational modeling. An outlook on future modeling strategies highlighting reduced order modeling which could significantly reduce the high time and cost that are required for computational prediction of TAVR outcomes is presented in this review paper. A summary of current commercial/in-development software is presented in the final section.

6.
Cardiovasc Eng Technol ; 12(6): 576-588, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34859378

RESUMEN

PURPOSE: Leaflet thrombosis is a significant adverse event after transcatheter aortic valve (TAV) replacement (TAVR). The purpose of our study was to present a semi-empirical, mathematical model that links patient-specific anatomic, valve, and flow parameters to predict likelihood of leaflet thrombosis. METHODS: The two main energy sources of neo-sinus (NS) washout after TAVR include the jet flow downstream of the TAV and NS geometric change in volume due to the leaflets opening and closing. Both are highly dependent on patient anatomic and hemodynamic factors. As rotation of blood flow is prevalent in both the sinus of Valsalva and then the NS, we adopted the vorticity flux or circulation (Г) as a metric quantifying overall washout. Leaflet thrombus volumes were segmented based on hypo-attenuating leaflet thickening (HALT) in post-TAVR patient's gated computed tomography. Г was assessed using dimensional scaling as well as computational fluid dynamics (CFD) respectively and correlated to the thrombosis volumes using sensitivity and specificity analysis. RESULTS: Г in the NS, that accounted for patient flow and anatomic conditions derived from scaling arguments significantly better predicted the occurrence of leaflet thrombus than CFD derived measures such as stasis volumes or wall shear stress. Given results from the six patient datasets considered herein, a threshold Г value of 28.0 yielded a sensitivity and specificity of 100% where patients with Gamma < 28 developed valve thrombosis. A 10% error in measurements of all variables can bring the sensitivity specificity down to 87%. CONCLUSION: A predictive model relating likelihood of valve thrombosis using Г in the NS was developed with promising sensitivity and specificity. With further studies and improvements, this predictive technology may lead to alerting physicians on the risk for thrombus formation following TAVR.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Prótesis Valvulares Cardíacas/efectos adversos , Hemodinámica , Humanos , Hidrodinámica , Modelos Cardiovasculares , Trombosis/diagnóstico por imagen , Trombosis/etiología , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
7.
IEEE Trans Biomed Eng ; 68(9): 2821-2832, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33523803

RESUMEN

Magnetic guidance of cochlear implants is a promising technique to reduce the risk of physical trauma during surgery. In this approach, a magnet attached to the tip of the implant electrode array is guided within the scala tympani using a magnetic field. After surgery, the magnet must be detached from the implant electrode array via localized heating, which may cause thermal trauma, and removed from the scala tympani. OBJECTIVES: The objective of this work is to experimentally validate a three-dimensional (3D) heat transfer model of the scala tympani which will enable accurate predictions of the maximum safe input power to avoid localized hyperthermia when detaching the magnet from the implant electrode array. METHODS: Experiments are designed using a rigorous scale analysis and performed by measuring transient temperatures in a 3D-printed scala tympani phantom subjected to a sudden change in its isothermal environment and localized heating via a small heat source. RESULTS: The measured and predicted temperatures are in good agreement with an error less than 6 % ( p= 0.84). For the most conservative case where all boundaries of the model except the insertion opening are adiabatic, the power required to release the magnet attached to the implant electrode array by 1 mm 3 of paraffin is approximately half of the predicted maximum safe input power. CONCLUSIONS: A 3D heat transfer model of the scala tympani is successfully validated and enables predicting the maximum safe input power required to detach the magnet from the implant electrode array. SIGNIFICANCE: This work will enable the design of a thermally safe magnetic cochlear implant surgery procedure.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Calor , Fenómenos Magnéticos , Rampa Timpánica/cirugía
8.
J Therm Sci Eng Appl ; 13(5)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35075383

RESUMEN

An Omnimagnet is an electromagnetic device that enables remote magnetic manipulation of devices such as medical implants and microrobots. It is composed of three orthogonal nested solenoids with a ferromagnetic core at the center. Electrical current within the solenoids leads to undesired temperature increase within the Omnimagnet. If the temperature exceeds the melting point of the wire insulation, device failure may occur. Thus, a study of heat transfer within an Omnimagnet is a necessity, particularly to maximize the performance of the device. A transient heat transfer model that incorporates all three heat transfer modes is proposed and experimentally validated with an average normalized root-mean-square error of less than 4% (data normalized by temperature in degree celsius). The transient model is not computationally expensive and is applicable to Omnimagnets with different structures. The code is applied to calculate the maximum safe operational time at a fixed input current or the maximum safe input current for a fixed time interval. The maximum safe operational time and maximum safe input current depend on size and structure of the Omnimagnet and the lowest critical temperature of all the Omnimagnet materials. A parametric study shows that increasing convective heat transfer during cooling, and during heating with low input currents, is an effective method to increase the maximum operational time of the Omnimagnet. The thermal model is also presented in a state-space equation format that can be used in a real-time Kalman filter current controller to avoid device failure due to excessive heating.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32773843

RESUMEN

Magnetic cochlear implant surgery requires removal of a magnet via a heating process after implant insertion, which may cause thermal trauma within the ear. Intra-cochlear heat transfer analysis is required to ensure that the magnet removal phase is thermally safe. The objective of this work is to determine the safe range of input power density to detach the magnet without causing thermal trauma in the ear, and to analyze the effectiveness of natural convection with respect to conduction for removing the excess heat. A finite element model of an uncoiled cochlea, which is verified and validated, is applied to determine the range of maximum safe input power density to detach a 1-mm-long, 0.5-mm-diameter cylindrical magnet from the cochlear implant electrode array tip. It is shown that heat dissipation in the cochlea is primarily mediated by conduction through the electrode array. The electrode array simultaneously reduces natural convection due to the no-slip boundary condition on its surface and increases axial conduction in the cochlea. It is concluded that natural convection heat transfer in a cochlea during robotic cochlear implant surgery can be neglected. It is found that thermal trauma is avoided by applying a power density from 2.265 × 107 W/m3 for 114 s to 6.6×107 W/m3 for 9 s resulting in a maximum temperature increase of 6°C on the magnet boundary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...