Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 430(7): 987-1003, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29458124

RESUMEN

The type VI secretion system (T6SS) is a multiprotein complex used by bacteria to deliver effectors into target cells. The T6SS comprises a bacteriophage-like contractile tail structure anchored to the cell envelope by a membrane complex constituted of the TssJ outer-membrane lipoprotein and the TssL and TssM inner-membrane proteins. TssJ establishes contact with the periplasmic domain of TssM whereas the transmembrane segments of TssM and its cytoplasmic domain interact with TssL. TssL protrudes in the cytoplasm but is anchored by a C-terminal transmembrane helix (TMH). Here, we show that TssL TMH dimerization is required for the stability of the protein and for T6SS function. Using the TOXCAT assay and point mutations of the 23 residues of the TssL TMH, we identified Thr194 and Trp199 as necessary for TssL TMH dimerization. NMR hydrogen-deuterium exchange experiments demonstrated the existence of a dimer with the presence of Trp185 and Trp199 at the interface. A structural model based on molecular dynamic simulations shows that TssL TMH dimer formation involves π-π interactions resulting from the packing of the two Trp199 rings at the C-terminus and of the six aromatic rings of Tyr184, Trp185 and Trp188 at the N-terminus of the TMH.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Triptófano/química , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Estabilidad Proteica
2.
Biol Aujourdhui ; 211(4): 271-280, 2017.
Artículo en Francés | MEDLINE | ID: mdl-29956654

RESUMEN

Gene expression in higher eukaryotes is regulated through the involvement of transcription start site (TSS)-proximal (promoters) and -distal (enhancers) regulatory elements. Enhancer elements play an essential role during development and cell differentiation, while genetic alterations in these elements are a major cause of human disease. Here, we discuss recent advances in high-throughput approaches to identify and characterize enhancer elements, from the well-established massively parallel reporter assays to the recent clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based technologies. We discuss how these approaches contribute toward a better understanding of enhancer function in normal and pathological conditions.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos de Facilitación Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Elementos de Facilitación Genéticos/fisiología , Edición Génica/métodos , Regulación de la Expresión Génica/genética , Humanos
3.
J Mol Biol ; 428(22): 4413-4423, 2016 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-27600409

RESUMEN

The type VI secretion system (T6SS) is a multiprotein complex that delivers toxin effectors in both prokaryotic and eukaryotic cells. It is constituted of a long cytoplasmic structure-the tail-made of stacked Hcp hexamers and wrapped by a contractile sheath. Contraction of the sheath propels the inner tube capped by the VgrG spike protein toward the target cell. This tubular structure is built onto an assembly platform-the baseplate-that is composed of the TssEFGK-VgrG subunits. During the assembly process, the baseplate is recruited to a trans-envelope complex comprising the TssJ outer membrane lipoprotein and the TssL and TssM inner membrane proteins. This membrane complex serves as a docking station for the baseplate/tail and as a channel for the passage of the inner tube during sheath contraction. The baseplate is recruited to the membrane complex through multiple contacts including interactions of TssG and TssK with the cytoplasmic loop of TssM and of TssK with the cytoplasmic domain of TssL, TssLCyto. Here, we show that TssLCyto interacts also with the TssE baseplate subunit. Based on the available TssLCyto structures, we targeted conserved regions and specific features of TssLCyto in enteroaggregative Escherichia coli. By using bacterial two-hybrid analysis and co-immunoprecipitation, we further show that the disordered L3-L4 loop is necessary to interact with TssK and that the L6-L7 loop mediates the interaction with TssE, whereas the TssM cytoplasmic loop binds the conserved groove of TssLCyto. Finally, competition assays demonstrated that these interactions are physiologically important for T6SS function.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Análisis Mutacional de ADN , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...