Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(38): 27006-27015, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37692346

RESUMEN

Gold nanorods (AuNRs) suspension at various concentrations was added into the sol-gel process to engineer nanostructured europium-doped silica host matrices as light-emitting composites. For this purpose, the samples were prepared following two different routes depending on the chemicals used as dopant and catalyst: (a) Eu(NO3)3·5H2O and HNO3, and (b) EuCl·6H2O and HCl. In any case, samples adding various concentrations of AuNRs suspension were prepared. The structural characterization of the samples was through STEM, backscattered electrons (BSE), and EDS analysis. Additionally, their optical properties were evaluated by PL spectroscopy and CIE colorimetry. The results confirmed that (a) methodology produced samples with AuNRs embedded and randomly distributed in the samples. However, these features were not observed in the samples obtained through (b) due to AuNRs dissolution in HCl media. Regarding the optical properties, the analysis of the relative intensity ratio 5D0 → 7F2/5D0 → 7F1 suggested that Eu3+ ions occupy non-centrosymmetric sites in (a) host matrices and centrosymmetric sites in (b). Hence, the increase of AuNRs suspension when fabricating (a) host matrices produced remarkable color changes in the luminescence of the samples towards the reddish-orange region. Meanwhile, the dissolution of AuNRs in (b) minimized the localized surface plasmon resonance (LSPR) effects on the Eu3+ luminescence. These findings revealed that the evaluation and selection of chemicals are critical factors when engineering these materials for more efficient coupling between the LSPR and Eu3+ luminescence.

3.
Micron ; 166: 103415, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657307

RESUMEN

Silica-Gold Nanostructures (SGNs), composed of a silica core decorated by gold nanoparticles, have the photothermal capacity to transform near-infrared (NIR) wavelengths into heat. This work presents a simple, efficient, and replicable method of synthesis of SGNs and their characterization by: (1) transmission electron microscopy to obtain micrographs of the particles and their corresponding diameter distribution; (2) diffraction patterns showing the amorphous atomic arraignment of the silica and the crystalline atomic arrangement of the gold nanoparticles; (3) zeta potential confirming the stability of the SGNs in a colloidal solution; and (4) thermal images displaying the capacity of SGNs to convert NIR irradiation into heat and their respective increment in temperature. SGNs were synthesized over silica cores with diameters of 63, 83, and 132 nm and decorated with a partial gold shell. They were heated with a coherent light intensity of 340 mW/cm2 with a wavelength of 852 nm. This wavelength is within the range of the optical window of the human body; therefore, SGNs may be used for the photothermal ablation of tumors with no damage to the tissue. The heating of different dimensions of SGNs took 6-8 min of NIR radiation, and their cooling, once the laser was turned off, was in the order of 2-3 min. It was found that SGNs, with a core diameter of 132 nm, have a notable photothermal capacity. That enables them to increase the temperature of their surroundings by 4.4 ºC. This increment in temperature is sufficient to induce cellular necrosis, which makes SGNs a good option for photothermal treatments.

4.
Biomater Sci ; 10(18): 5216-5229, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35903989

RESUMEN

Gold salts have been used to treat rheumatoid arthritis (RA) since the 1940s, and, with advances in nanotechnology, the use of nanogold provides multiple options for anti-inflammatory therapies. This paper presents the synthesis and characterization of silica-gold nanostructures (SGNs) and their therapeutic effect in collagen-induced arthritis (CIA) in DBA/1 mice. At the end of the treatment, the synovial membranes, kidneys, livers, and spleens were dissected and analyzed by inductively coupled plasma mass spectroscopy (ICP) showing less than 0.0001 and 0.1% of the administered doses of Au and Si, respectively. Remains of the SGNs were visually identified in the synovial membrane by scanning electron microscopy (SEM), and the bone density of the hind paws was observed by computerized tomography (CT) indicating a reduction of porosity in the CIA-experimental group. The DNA microarray analysis carried out with RNA obtained from the hind paws showed 2628 differentially expressed genes (DEGs) by SGNs. The bioinformatic analysis showed that DEGs were significantly associated with several inflammatory signalling pathways including chemokines, cytokine-cytokine receptor interaction, PI3K-Akt, TNF, IL-17, NFκß, MAPK, and RA. SGNs downregulated relevant inflammatory genes in the arthritic joints, including Tnf, Ifng, Il6, and Cxcl5; immunohistochemistry (IHC) confirmed the reduction of TNFα, IL-6, NFκß, and VEGF in the joints due to the effect of SGNs. TNFα and IL-6 were also reduced in the serum of DBA/1 mice treated with SGNs.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Nanoestructuras , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Expresión Génica , Oro/uso terapéutico , Inflamación/tratamiento farmacológico , Interleucina-6 , Ratones , Ratones Endogámicos DBA , Fosfatidilinositol 3-Quinasas , Dióxido de Silicio/uso terapéutico , Factor de Necrosis Tumoral alfa
5.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947754

RESUMEN

A Three-Way Catalyst (TWC) contains a cordierite ceramic monolith coated with a layer of Al2O3, CexZr1-xO2 and platinoids mixture. Under standard operation, the platinoid concentration decreases, exposing the remaining washcoat structure. After that particle release stage, the sintering process follows where the crystalline CexZr1-xO2 solution is broken and begins to separate into ZrO2 and CeO2 phases. ZrO2 is released to the environment as micro and nanoparticles, while a small amount of CeO2 generates a new AlxCe1-xO2 composite. The main effect of Ce capture is the growth in the size of the polycrystal structure from 86.13 ± 16.58 nm to 225.35 ± 69.51 nm. Moreover, a transformation of cordierite to mullite was identified by XRD analysis. Raman spectra showed that the oxygen vacancies (Vö) concentration decreased as CexZr1-xO2 phases separation occurred. The SEM-EDS revealed the incorporation of new spurious elements and microfractures favouring the detachment of the TWC support structure. The release of ultrafine particles is a consequence of catalytic devices overusing. The emission of refractory micro to nanocrystals to the atmosphere may represent an emerging public health issue underlining the importance of implementing strict worldwide regulations on regular TWCs replacement.

6.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884695

RESUMEN

Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Portadores de Fármacos/química , Farmacorresistencia Bacteriana , Compuestos Inorgánicos/administración & dosificación , Nanopartículas/administración & dosificación , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/microbiología , Humanos , Compuestos Inorgánicos/química , Nanopartículas/química
7.
Dent Mater ; 37(5): e290-e299, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33593590

RESUMEN

OBJECTIVES: The aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO2) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application. METHODS: The NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO2 were performed by scanning and transmission electron microscopy. The optical microscopic identification of the different colors was obtained due to varying the amounts of NHAp and NTiO2 in the adhesive. On the other hand, the diffuse reflectance spectra of the coatings were evaluated every 2nm with the wavelength from 400 to 800nm for combined specular and diffuse reflectance. The nanomechanical properties of the aesthetic coating such as (H), elastic modulus (E) and nanoscratching were evaluated by nanoindentation. The roughness of the composite coatings were evaluated by AFM. RESULTS: From different powders combinations, NHAP 75%Wt-NTiO2 %25Wt, at (10Wt %) into a dental adhesive, the resulting mixture manifested the optimum aesthetic white appearance. The scanning and transmission electron microscopy images confirmed that the HAp nanorods and TiO2 nanoparticles sized were 55nm and 20nm respectively prepared by the high-energy ball mixed process. The values of nanomechanical properties of the optimum aesthetic coating were hardness, H=3.2±0.3GPa, elastic modulus, E=78±3GPa, Yield point, Y=107MPa±2 and scratching, maximum wear track deformation 3.7±0.12 µm2. The percentage of reflectance to optimum aesthetic white appearance was of 46.83% at 423nm of wavelength. CONCLUSIONS: The nanocomposite PENTA/UDMA with mixtures of Nanohydroxyapatite and titanium dioxide may be considerate as a mechanical toughened, also an option to modify shade qualities for dental aesthetic applications.


Asunto(s)
Durapatita , Rubiaceae , Cementos Dentales , Esmalte Dental , Estética Dental , Ensayo de Materiales , Metacrilatos , Poliuretanos , Propiedades de Superficie , Titanio
8.
Nanomaterials (Basel) ; 8(11)2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30453604

RESUMEN

ß-Cyclodextrin (ßCD), the less water soluble of the cyclodextrins, has been used as a capping agent in the preparation of semiconductor nanocrystals or quantum dots (QDs). Nevertheless, no reports have been found in the use of the highly water-soluble polymer of this, prepared by the crosslinking of the ßCD units with epichlorohydrin in basic medium (ßCDP). This polymer, besides to overcome the low solubility of the ßCD, increases the inclusion constant of the guest; two parameters that deserve its use as capping agent, instead of the native cyclodextrin. In the present manuscript, we afforded the in-situ aqueous preparation of cadmium telluride (CdTe) QDs capped with ßCDP. The polymer influence on the photoluminescent properties of the nanocrystals was analyzed. The ßCDP controls the nanocrystals growth during the Oswald ripening stage. Consequently, the CdTe capped ßCDP QDs showed lower Stokes-shift values, higher photoluminescent efficiency, and narrower size distribution than for nanocrystals obtained in the absence of polymer. Transmission electron microscopy (TEM) micrographs and energy dispersive X-ray spectroscopy (EDS) analysis revealed the composition and crystallinity of the CdTe QDs. This ßCDP capped CdTe QDs is a potential scaffold for the supramolecular modification of QDs surface.

9.
Carbohydr Polym ; 175: 530-537, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917897

RESUMEN

Gold nanoparticles (AuNPs) can be prepared from the reduction of Au(III) with cyclodextrins acting as both, reducing and capping agent. It has been stated that a basic medium (pH=9-12) is a mandatory condition to achieve such reduction. We demonstrated, for the first time, the reduction of Au(III) by a crosslinked ß-cyclodextrin-epichlorohydrin polymer (ßCDP) in acid medium (pH ∼3). The coordination of Au(III) to the ßCD in ßCDP polymer required a ßCD:[AuCl4]- ratio of 4:1. The same ratio was necessary to achieve a 50% of the reduction of Au(III) to Au0 within the first 24h of reaction. During this initial time, the reaction showed a concentration-dependent reduction rate while for longer times the reduction rate was diffusion-dependent. An overall mechanism to explain this dependency has been proposed. The 13C NMR spectrum identified the oxidation of the COH groups to carboxylic ones by recording a signal at 175.6ppm. Gold nanoparticles cores (AuNPs) with a diameter of 34.2±7.7nm, determined by Transmission Electron Microscopy (TEM), was prepared by refluxing HAuCl4 in an aqueous solution of ßCDP. The AuNPs core was capped by dimers of the ßCDP polymer as determined by Dynamic Light Scattering measurements.

10.
Inorg Chem ; 54(23): 11200-8, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26574913

RESUMEN

Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

11.
Nanoscale Res Lett ; 7(1): 483, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22931255

RESUMEN

This paper is dedicated to study the thin polycrystalline films of semiconductor chalcogenide materials (CdS, CdSe, and PbS) obtained by ammonia-free chemical bath deposition. The obtained material is of polycrystalline nature with crystallite of a size that, from a general point of view, should not result in any noticeable quantum confinement. Nevertheless, we were able to observe blueshift of the fundamental absorption edge and reduced refractive index in comparison with the corresponding bulk materials. Both effects are attributed to the material porosity which is a typical feature of chemical bath deposition technique. The blueshift is caused by quantum confinement in pores, whereas the refractive index variation is the evident result of the density reduction. Quantum mechanical description of the nanopores in semiconductor is given based on the application of even mirror boundary conditions for the solution of the Schrödinger equation; the results of calculations give a reasonable explanation of the experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA