Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976084

RESUMEN

Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory markers of macrophages and increase anti-inflammatory cytokines. To assess their suitability as part of wound dressings, these NPs were combined with hyaluronan (HA)/collagen-based hydro- (HGs) and cryogels (CGs). Different HA and NP concentrations and loading techniques for NP incorporation were used. The NP release, gel morphology, and mechanical properties were studied. Generally, colonialization of the gels with macrophages resulted in high cell viability and proliferation. Furthermore, direct contact of the NPs to the cells reduced the level of nitric oxide (NO). The formation of multinucleated cells on the gels was low and further decreased by the NPs. For the HGs that produced the highest reduction in NO, extended ELISA studies showed reduced levels of the pro-inflammatory markers PGE2, IL-12 p40, TNF-α, and IL-6. Thus, HA/collagen-based gels containing KT NPs may represent a novel therapeutic approach for treating chronic wounds. Whether effects observed in vitro translate into a favorable profile on skin regeneration in vivo will require rigorous testing.

2.
Biomater Adv ; 145: 213247, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36527961

RESUMEN

Skin is the most extensive organ within our body. It is continually subjected to stress factors, among which ultraviolet irradiation, a key factor responsible in skin aging since it leads to reactive oxygen species production. In order to fight against these oxidative species, the human body has an innate robust antioxidant mechanism composed of several different substances, one of which is coenzyme Q10. Its capacity to increase cellular energy production and excellent antioxidant properties have been proved, as well as its antiaging properties being able to attenuate cellular damage induced by ultraviolet irradiation in human dermal fibroblasts. However, its high hydrophobicity and photolability hampers its therapeutic potential. In this context, the objective of this work consists of the preparation of chitosan-rosmarinic acid conjugate-based nanoparticles to encapsulate coenzyme Q10 with high encapsulation efficiencies in order to improve its bioavailability and broaden its therapeutic use in skin applications. Hyaluronic acid coating was performed giving stable nanoparticles at physiological pH with 382 ± 3 nm of hydrodynamic diameter (0.04 ± 0.02 polydispersity) and - 18 ± 3 mV of surface charge. Release kinetics studies showed a maximum of 82 % mass release of coenzyme Q10 after 40 min, and radical scavenger activity assay confirmed the antioxidant character of chitosan-rosmarinic acid nanoparticles. Hyaluronic acid-coated chitosan-rosmarinic acid nanoparticles loaded with coenzyme Q10 were biocompatible in human dermal fibroblasts and exhibited interesting photoprotective properties in ultraviolet irradiated cells. In addition, nanoparticles hindered the production of reactive oxygen species, interleukin-6 and metalloproteinase-1, as well as caspase-9 activation maintaining high viability values upon irradiation of dermal fibroblasts. Overall results envision a great potential of these nanovehicles for application in skin disorders or antiaging treatments.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Antioxidantes/farmacología , Ubiquinona/farmacología , Ubiquinona/química , Especies Reactivas de Oxígeno , Quitosano/farmacología , Quitosano/química , Ácido Hialurónico , Nanopartículas/química , Ácido Rosmarínico
3.
ACS Appl Mater Interfaces ; 14(8): 10068-10080, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179869

RESUMEN

Supramolecular peptide-based hydrogels attract great attention in several fields, i.e., biomedicine, catalysis, energy, and materials chemistry, due to the noncovalent nature of the self-assembly and functional tunable properties defined by the amino acid sequence. In this work, we developed an injectable hybrid supramolecular hydrogel whose formation was triggered by electrostatic interactions between a phosphorylated tripeptide, Fmoc-FFpY (F: phenylalanine, pY: phosphorylated tyrosine), and cationic polymer nanoparticles made of vinylimidazole and ketoprofen (poly(HKT-co-VI) NPs). Hydrogel formation was assessed through inverted tube tests, and its fibrillary structure, around polymer NPs, was observed by transmission electron microscopy. Interestingly, peptide self-assembly yields the formation of nontwisted and twisted fibers, which could be attributed to ß-sheets and α-helix structures, respectively, as characterized by circular dichroism and infrared spectroscopies. An increase of the elastic modulus of the Fmoc-FFpY/polymer NPs hybrid hydrogels was observed with peptide concentration as well as its injectability property, due to its shear thinning behavior and self-healing ability. After checking their stability under physiological conditions, the cytotoxicity properties of these hybrid hydrogels were evaluated in contact with human dermal fibroblasts (FBH) and murine macrophages (RAW 264.7). Finally, the Fmoc-FFpY/polymer NPs hybrid hydrogels exhibited a great nitric oxide reduction (∼67%) up to basal values of pro-inflammatory RAW 264.7 cells, thus confirming their excellent anti-inflammatory properties for the treatment of localized inflammatory pathologies.


Asunto(s)
Hidrogeles , Nanopartículas , Animales , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Péptidos/química , Péptidos/farmacología , Fenilalanina , Polímeros
4.
Carbohydr Polym ; 273: 118619, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561015

RESUMEN

Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications. Chitosan was functionalized with different contents of rosmarinic acid as confirmed by ATR-FTIR, 1H NMR and UV spectroscopies. CSRA conjugates presented three-fold radical scavenger capacity compared to the free phenolic compound. Films were prepared by solvent-casting procedure and the biological activity of the lixiviates was studied in vitro. Results revealed that lixiviates reduced activation of inflamed macrophages, improved antibacterial capacity against E. coli with respect to native chitosan and free rosmarinic acid, and also attenuated UVB-induced cellular damage and reactive oxygen species production in fibroblasts and keratinocytes.


Asunto(s)
Antiinflamatorios/farmacología , Quitosano/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Depuradores de Radicales Libres/farmacología , Protectores contra Radiación/farmacología , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/toxicidad , Quitosano/análogos & derivados , Quitosano/toxicidad , Cinamatos/síntesis química , Cinamatos/toxicidad , Depsidos/síntesis química , Depsidos/toxicidad , Escherichia coli/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/toxicidad , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/metabolismo , Células RAW 264.7 , Protectores contra Radiación/síntesis química , Protectores contra Radiación/toxicidad , Staphylococcus epidermidis/efectos de los fármacos , Ácido Rosmarínico
5.
Mater Sci Eng C Mater Biol Appl ; 124: 112024, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947532

RESUMEN

Cytotoxic chemotherapy continues to be the main therapeutic option for patients with metastatic breast cancer. Several studies have reported a significant association between chronic inflammation, carcinogenesis and the presence of cancer stem cells (CSC). We hypothesized that the use of non-steroidal anti-inflammatory drugs targeted to the CSC population could help reducing tumor progression and dissemination in otherwise hard to treat metastatic breast cancer. Within this study cationic naproxen (NAP)-bearing polymeric nanoparticles (NPs) were obtained by self-assembly and they were coated with hyaluronic acid (HA) via electrostatic interaction. HA-coated and uncoated NAP-bearing NPs with different sizes were produced by changing the ionic strength of the aqueous preparation solutions (i.e. 300 and 350 nm or 100 and 130 nm in diameter, respectively). HA-NPs were fully characterized in terms of physicochemical parameters and biological response in cancer cells, macrophages and endothelial cells. Our results revealed that HA-coating of NPs provided a better control in NAP release and improved their hemocompatibility, while ensuring a strong CSC-targeting in MCF-7 breast cancer cells. Furthermore, the best polymeric NPs formulation significantly (p < 0.001) reduced MCF-7 cells viability when compared to free drug (i.e. 45 ± 6% for S-HA-NPs and 87 ± 10% for free NAP) by p53-dependent induction of apoptosis; and the migration of these cell line was also significantly (p < 0.01) reduced by the nano-formulated NAP (i.e. 76.4% of open wound for S-HA-NPs and 61.6% of open wound for NAP). This increased anti-cancer activity of HA-NAP-NPs might be related to the induction of apoptosis through alterations of the GSK-3ß-related COX-independent pathway. Overall, these findings suggest that the HA-NAP-NPs have the potential to improve the treatment of advanced breast cancer by increasing the anti-proliferative effect of NAP within the CSC subpopulation.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Células Endoteliales , Glucógeno Sintasa Quinasa 3 beta , Humanos , Receptores de Hialuranos , Ácido Hialurónico , Naproxeno/farmacología , Células Madre Neoplásicas
6.
Pharmaceutics ; 12(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751993

RESUMEN

Polymeric nanoparticles that combine dexamethasone and naproxen reduce inflammation and synergistically inhibit Interleukin-12b (Il12b) transcription in macrophages. This effect can be the result of a cyclooxygenase-dependent or a cyclooxygenase-independent mechanism. The aim of this work is to obtain potent anti-inflammatory polymeric nanoparticles by the combination of dexamethasone and ketoprofen, one of the most efficient cyclooxygenase-inhibitors among non-steroidal anti-inflammatory drugs, with appropriate hydrodynamic properties to facilitate accumulation and co-release of drugs in inflamed tissue. Nanoparticles are spherical with hydrodynamic diameter (117 ± 1 nm), polydispersity (0.139 ± 0.004), and surface charge (+30 ± 1 mV), which confer them with high stability and facilitate both macrophage uptake and internalization pathways to favor their retention at the inflamed areas and lysosomal degradation and drug release, respectively. In vitro biological studies concluded that the dexamethasone-loaded ketoprofen-bearing system is non-cytotoxic and efficiently reduces lipopolysaccharide-induced nitric oxide release. The RT-qPCR analysis shows that the ketoprofen nanoparticles were able to reduce to almost basal levels the expression of tested pro-inflammatory markers and increase the gene expression of anti-inflammatory cytokines under inflammatory conditions. However, the synergistic inhibition of Il12b observed in nanoparticles that combine dexamethasone and naproxen was not observed in nanoparticles that combine dexamethasone and ketoprofen, suggesting that the synergistic trans-repression of Il12b observed in the first case was not mediated by cyclooxygenase-dependent pathways.

7.
Macromol Biosci ; 20(7): e2000002, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32421256

RESUMEN

Recent studies have demonstrated in vivo synergistic immunosuppressive and anti-inflammatory capacity of dexamethasone (Dx) and naproxen (NAP) in collagen-induced arthritis (CIA) rats. However, the molecular basis of this synergistic effect is barely understood. The low solubility of these drugs and their adverse effects hamper their efficacy on the treatment of inflammatory processes making nanoparticulated systems promising candidates to overcome these drawbacks. The aim of this work is the preparation of polymeric nanoparticles (NPs) that combine NAP and Dx in different concentrations, and the evaluation of the expression of key genes related to autoimmune diseases like CIA. To do so, self-assembled polymeric NPs that incorporate covalently-linked NAP and physically entrapped Dx are designed to have hydrodynamic properties that, according to bibliography, may improve retention and colocalization of both drugs at inflammation sites. The rapid uptake of NPs by macrophages is demonstrated using coumarine-6-loaded NPs. Dx is efficiently encapsulated and in vitro biological studies demonstrate that the Dx-loaded NAP-bearing NPs are noncytotoxic and reduce lipopolysaccharide-induced NO released levels at any of the tested concentrations. Moreover, at the molecular level, a significant synergistic reduction of Il12b transcript gene expression when combining Dx and NAP is demonstrated.


Asunto(s)
Dexametasona/farmacología , Macrófagos/metabolismo , Nanopartículas/química , Naproxeno/farmacología , Polímeros/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antiinflamatorios/farmacología , Muerte Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Subunidad p40 de la Interleucina-12 , Macrófagos/efectos de los fármacos , Ratones , Peso Molecular , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Naproxeno/síntesis química , Naproxeno/química , Óxido Nítrico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Células RAW 264.7
8.
Biomacromolecules ; 20(10): 4015-4025, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31449398

RESUMEN

Immune response to biomaterials can produce chronic inflammation and fibrosis leading to implant failure, which is related to the surface properties of the biomaterials. This work describes the preparation and characterization of polyelectrolyte multilayer (PEM) coatings that combine the anti-inflammatory activity of heparin as polyanion with the potential release of Naproxen, a nonsteroidal anti-inflammatory drug from polymeric nanoparticles (NP) with cationic surface charge. The polyelectrolyte multilayers were characterized by physical methods to estimate multilayer growth, thickness, zeta potential, and topography. It was found that multilayers with NP had negative zeta potentials and expressed a viscoelastic behavior, while studies of topography showed that nanoparticles formed continuous surface coatings. THP-1-derived macrophages were used to study short-term anti-inflammatory activity (time scale 48 h), showing that PEM that contained heparin reduced cell adhesion and IL1-ß secretion, when compared to those with polystyrenesulfonate, used as alternative polyanion in multilayer formation. On the other hand, the presence of NP in PEM was related to a reduced foreign body giant cell formation after 15 days, when compared to PEM that contained chitosan as alternative polycation, which suggests a long-term anti-inflammatory effect of Naproxen-containing nanoparticles. It was also shown that macrophages were able to take up NP from multilayers, which indicates a release of Naproxen by digestion of NP in the lysosomal compartment. These findings indicate that surface coatings composed of heparin and Naproxen-based NP on implants such as biosensors have the potential to attenuate foreign body reaction after implantation, which may improve the long-term functionality of implants.


Asunto(s)
Antiinflamatorios/química , Heparina/química , Nanopartículas/química , Naproxeno/química , Polielectrolitos/química , Antiinflamatorios/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Quitosano/química , Materiales Biocompatibles Revestidos/química , Heparina/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Naproxeno/farmacología , Polímeros/química , Poliestirenos/química , Propiedades de Superficie/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA