Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675696

RESUMEN

The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting ß-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 µg/mL) and amastigote (IC50 of 8.04 and 7.32 µg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios , Simulación del Acoplamiento Molecular , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antioxidantes/farmacología , Antioxidantes/química , Cromatografía de Gases y Espectrometría de Masas , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Simulación por Computador , Leishmania/efectos de los fármacos , Leishmania/enzimología , Monoterpenos Bicíclicos/farmacología , Monoterpenos Bicíclicos/química
2.
3 Biotech ; 13(12): 395, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37970450

RESUMEN

This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 µg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 µg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 µg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 µg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03825-3.

3.
Int J Environ Health Res ; : 1-15, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855230

RESUMEN

Combination therapy at appropriately suitable doses presents a promising alternative to monotherapeutic drugs. In this study, Cinnamomum verum and Syzygium aromaticum essential oils and their major compounds have exhibited substantial leishmaniacidal potential against both promastigote and amastigote forms of Leishmania (L.) major. However, they displayed high cytotoxicity against Raw264.7 macrophage cells. Interestingly, when combined with each other or with amphotericin B, they demonstrated a synergistic effect (FIC<0.5) with low cytotoxicity. These combinations are able to modulate the production of nitric oxide (NO) by macrophages. Notably, the combination of S. aromaticum Essential oil with amphotericin B stimulates macrophage cells by increasing NO production to eliminate leishmanial parasites. Furthermore, investigation of the molecular mechanism of action of these synergistic combinations reveals potent inhibition of the sterol pathway through the inhibition of the CYP51 gene expression. The findings suggest that combination therapy may offer significant therapeutic benefits in both food and pharmaceutical fields.

4.
Molecules ; 28(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570651

RESUMEN

Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.


Asunto(s)
Quitosano , Nanopartículas , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Candida , Cinnamomum zeylanicum/química , Antifúngicos/farmacología , Antifúngicos/química , Quitosano/farmacología , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Candida albicans , Nanopartículas/química
5.
Molecules ; 28(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446858

RESUMEN

The present study investigated the antioxidant, antibacterial, antiviral and anti-inflammatory activities of different aerial parts (flowers, leaves and seeds) of Datura stramonium. The plant material was extracted with 80% methanol for about 24 h. The sensitivity to microorganisms analysis was performed by the microdilution technique. Antioxidant tests were performed by scavenging the DPPH and ABTS radicals, and by FRAP assay. Anti-inflammatory activity was evaluated through the inhibition of nitric oxide production in activated macrophage RAW 264.7 cells. Cell viability was assessed with an MTT assay. Results show that the flower extract revealed a powerful antimicrobial capacity against Gram-positive bacteria and strong antioxidant and anti-inflammatory activities. No significant cytotoxicity to activated macrophages was recorded. High resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analysis identified two molecules with important anti-inflammatory effects: 12α-hydroxydaturametelin B and daturametelin B. Molecular docking analysis with both pro-inflammatory agents tumor necrosis factor alpha and interleukin-6 revealed that both compounds showed good binding features with the selected target proteins. Our results suggest that D. stramonium flower is a promising source of compounds with potential antioxidant, antibacterial, and anti-inflammatory activities. Isolated withanolide steroidal lactones from D. stramonium flower extract with promising anti-inflammatory activity have therapeutic potential against inflammatory disorders.


Asunto(s)
Datura stramonium , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Antioxidantes/química , Flores/química , Antiinflamatorios/química , Antibacterianos/química
6.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36649680

RESUMEN

AIMS: This study aimed to determine the antibacterial and antileishmanial potential of Micromeria nervosa extracts. The identification of the antileishmanial compound and the study of its molecular mechanism of action have also been undertaken. METHODS AND RESULTS: Ethanol extract showed high polyphenol content and diethyl ether extract exhibited high DPPH scavenging and low beta-carotene bleaching activity (IC50 = 13.04 ± 0.99 and 200.18 ± 3.32 µg mL-1, respectively). However, diethyl ether extract displayed high antibacterial activity against Gram-positive strains including methicillin-resistant Staphylococcus aureus (MIC = 31.25 µg mL-1), Staph. aureus ATCC6538 (MIC = 62.5 µg mL-1), and Listeria monocytogenes ATCC 19115 (MIC = 125 µg mL-1), as well as high antileishmanial activity against the promastigote forms of L. infantum and L. major (IC50 = 11.45 and 14.53 µg mL-1, respectively). The active compound was purified using bioassay-guided fractionation and thin layer chromatography, and identified as ursolic acid using high-performance liquid chromatography coupled with a photodiode array and mass spectrometry. The purified compound was strongly inhibitory against the promastigote and amastigote forms of L. infantum and L. major (IC50 = 5.87 and 6.95 µg mL-1 versus 9.56 and 10. 68 µg mL-1, respectively) without overt cytotoxicity against Raw 264.7 macrophage cells (SI = 13.53 and 11.43, respectively). The commercial compound (ursolic acid) showed similar activity against amastigotes and promastigotes forms of L. infantum and L. major. Moreover, its molecular mode of action against leishmaniasis seems to involve the expression of the ODC and SPS genes involved in thiol pathway. CONCLUSION: Extracts of M. nervosa can be considered as a potential alternative to antimicrobial and antileishmanial drugs.


Asunto(s)
Antiinfecciosos , Antiprotozoarios , Lamiaceae , Staphylococcus aureus Resistente a Meticilina , Antioxidantes/farmacología , Antioxidantes/análisis , Éter , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiprotozoarios/farmacología , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Staphylococcus aureus , Ácido Ursólico
7.
Sci Rep ; 12(1): 19814, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396702

RESUMEN

To explore a novel kind of green composite material having excellent antibacterial, antifungal ability and specific-targeting capability for pharmaceutical uses, a novel kind of bio-composite was prepared using sodium purified clay as carrier of Caraway essential oil (CEO). Gas chromatography-mass spectroscopy (GC-MS) analyses of CEO reveals that Carvone (68.30%) and Limonene (22.54%) are the two major components with a minimum inhibitory concentration (MIC) value equal to 125 mg/mL against Staphylococcus (S) aureus bacteria and Candida albicans fungi. Clay from Zaghouan was purified and characterized by X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption-desorption (BET method). Results obtained by chromatograph equipped with a flame ionization detector (GC-FID) show that the concentration of 130 mg/mL of essential oil and 5 h of contact with the purified clay are the optimal conditions for the bio-hybrid formation. The pseudo-second-order model can describe the kinetic study of the adsorption of Carvone and Limonene on sodium montmorillonite, and the adsorption isotherms have been established to the Langmuir type. Limonene registers a maximum adsorption value equal to 3.05 mg/g of clay however Carvone register the higher amount of adsorption (19.98 mg/g) according to its polarity and the abundance of this compound in the crude CEO. X-ray diffraction, Fourier transformed infrared spectroscopy, elemental analyses (CHN) and X-ray fluorescence characterization valid the success adsorption of CEO in sodium montmorillonite surface. The purified clay/CEO hybrid (purified clay/CEO) combined the advantages of both the clay and the essential oil used in exerting the antibacterial and antifungal activity, and thus, the composite has a double antibacterial and antifungal activity compared to the separately uses of inactive clay and CEO, suggesting the great potential application in pharmaceutical treatments.


Asunto(s)
Carum , Aceites Volátiles , Arcilla/química , Bentonita/química , Adsorción , Limoneno , Aceites Volátiles/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos , Antibacterianos , Preparaciones Farmacéuticas , Sodio
8.
Arch Microbiol ; 204(2): 133, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-34999965

RESUMEN

Biofilm formation of the opportunistic pathogen Pseudomonas (P). aeruginosa is one of the major global challenges to control nosocomial infections due to their high resistance to antimicrobials and host defense mechanisms. The present study aimed to assess the antibacterial and the antibiofilm activities of Peganum (P). harmala seed extract against multidrug-resistant P. aeruginosa isolates. Chemical identification of the active compound and determination of its molecular mechanism of action were also investigated. Results showed that P. harmala n-butanol "n-BuOH" extract exhibited antibacterial activity against multidrug-resistant P. aeruginosa isolates. This extract was even more active than conventional antibiotics cefazolin and vaamox when tested against three P. aeruginosa multidrug-resistant isolates. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against PAO1 strain at MIC value corresponding to 500 µg/mL and attained 100% killing effect at 24 h of incubation. Furthermore, P. harmala n-BuOH extract showed an antibiofilm activity against P. aeruginosa PAO1 and exhibited 80.43% inhibition at sub-inhibitory concentration. The extract also eradicated 83.99% of the biofilm-forming bacteria. The active compound was identified by gas chromatography-mass spectrometry as an indole alkaloid harmaline. Transcriptomic analysis showed complete inhibition of the biofilm-related gene pilA when PAO1 cells were treated with harmaline. Our results revealed that P. harmala seed extract and its active compound harmaline could be considered as a candidate for a new treatment of multidrug-resistant P. aeruginosa pathogens-associated biofilm infections.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Peganum , Extractos Vegetales , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Peganum/química , Extractos Vegetales/farmacología
9.
Arch Microbiol ; 204(1): 119, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989872

RESUMEN

The aim of this study was to investigate antimicrobial and antioxidant activities of different fractions obtained from edible Tunisian Ziziphus Lotus leaves of Tozeur region. Different organic extracts were tested: cyclohexane, dichloromethane, ethyl acetate, n-butanol and water. Bio-guided fractionation revealed that dichloromethane fraction is the most active against S. aureus and Methicillin-resistant S. aureus strains. Moreover, this fraction showed the highest antileishmanial activity with IC50 values of 20.55 ± 0.34 µg/mL and 15.37 ± 0.17 µg/mL against L. major and L. infantum, respectively. The potentialities of antibacterial and leishmanicidal activities found in dichloromethane could be explained by the presence of major flavonoids such as catechin, rutin and luteolin 7-O-glucoside as revealed by HPLC system. The observed moderate antifungal activity, which was only given by butanolic fraction against pathogen fungi, may be attributed to the presence of chlorogenic acid. Furthermore, dichloromethane and butanolic fraction showed a good DPPH (2,2-diphenyl-1-picryl hydrazyl) scavenging activity and Ferric reducing power. These results suggest that Ziziphus lotus leaf fractions might be used as antioxidant and antimicrobialagent.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Ziziphus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Hojas de la Planta , Staphylococcus aureus
10.
Appl Biochem Biotechnol ; 193(11): 3732-3752, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34398423

RESUMEN

Cyclic lipopeptides produced by Bacillus species exhibit interesting therapeutic potential. However, their clinical use remains limited due to their low stability, undesirable interactions with host macromolecules, and their potential toxicity to mammalian cells. The present work aims to develop suitable lipopeptide-loaded chitosan nanoparticles with improved biological properties and reduced toxicity. Surfactin and bacillomycin D lipopeptides produced by Bacillus amyloliquefaciens B84 strain were loaded onto chitosan nanoparticles by ionotropic gelation process. Nanoformulated lipopeptides exhibit an average size of 569 nm, a zeta potential range of 38.8 mV, and encapsulation efficiency (EE) of 85.58%. Treatment of Candida (C.) albicans cells with encapsulated lipopeptides induced anti-adhesive activity of 81.17% and decreased cell surface hydrophobicity (CSH) by 25.53% at 2000 µg/mL. Nanoformulated lipopeptides also induced antileishmanial activity against Leishmania (L.) major promastigote and amastigote forms at respective IC50 values of 14.37 µg/mL and 22.45 µg/mL. Nanoencapsulated lipopeptides exerted low cytotoxicity towards human erythrocytes and Raw 264.7 macrophage cell line with respective HC50 and LC50 values of 770 µg/mL and 234.56 µg/mL. Nanoencapsulated lipopeptides could be used as a potential delivery system of lipopeptides to improve their anti-adhesive effect against C. albicans cells colonizing medical devices and their anti-infectious activity against leishmania.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Antiprotozoarios , Candida albicans/metabolismo , Quitosano , Leishmania major/crecimiento & desarrollo , Lipopéptidos , Nanopartículas/química , Péptidos Cíclicos , Antifúngicos/química , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Antiprotozoarios/química , Antiprotozoarios/farmacología , Quitosano/química , Quitosano/farmacología , Lipopéptidos/química , Lipopéptidos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología
11.
Appl Biochem Biotechnol ; 187(4): 1460-1474, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30251231

RESUMEN

An endophytic Bacillus amyloliquefaciens strain called C5, able to produce biosurfactant lipopeptides with a broad antibacterial activity spectrum, has been isolated from the roots of olive tree. Optimization of antibacterial activity was undertaken using grape seed flour (GSF) substrate at 0.02, 0.2, and 2% (w/v) in M9 medium. Strain C5 exhibited optimal growth and antimicrobial activity (MIC value of 60 µg/ml) when incubated in the presence of 0.2% GSF while lipopeptide production culminated at 2% GSF. Thin layer chromatography analysis of lipopeptide extract revealed the presence of at least three active spots at Rf 0.35, 0.59, and 0.72 at 0.2% GSF. Data were similar to those obtained in LB-rich medium. MALDI-TOF/MS analysis of lipopeptide extract obtained from 0.2% GSF substrate revealed the presence of surfactin and bacillomycin D. These results show that GSF could be used as a low-cost culture medium supplement for optimizing the production of biosurfactants by strain C5.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Biotecnología/métodos , Harina , Lipopéptidos/biosíntesis , Lipopéptidos/farmacología , Semillas/química , Vitis/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
12.
Microbiol Res ; 217: 23-33, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30384906

RESUMEN

Four hundred and fifty bacteria were evaluated for antagonistic activity against bacterial soft rot of potato caused by Pectobacterium carotovorum sp strain II16. A strain Ar10 exhibiting potent antagonist activity has been identified as Bacillus amyloliquefaciens on the basis of biochemical and molecular characterization. Cell free supernatant showed a broad spectrum of antibacterial activity against human and phytopathogenic bacteria in the range of 10-60 AU/mL. Incubation of P. carotovorum cells with increasing concentrations of the antibacterial compound showed a killing rate of 94.8 and 96% at MIC and 2xMIC respectively. In addition, the antibacterial agent did not exert haemolytic activity at the active concentration and has been preliminary characterized by TLC and GC-MS as a glycolipid compound. Treatment of potato tubers with strain Ar10 for 72 h significantly reduced the severity of disease symptoms (100 and 85.05% reduction of necrosis deep / area and weight loss respectively). The same levels in disease symptoms severity was also recorded following treatment of potato tubers with cell free supernatant for 1 h. Data suggest that protection against potato soft rot disease may be related to glycolipid production by strain Ar10. The present study affords new alternatives for anti-Pectobacterium carotovorum bioactive compounds against the soft rot disease of potato.


Asunto(s)
Antibacterianos/farmacología , Bacillus amyloliquefaciens/metabolismo , Agentes de Control Biológico/antagonistas & inhibidores , Glucolípidos/antagonistas & inhibidores , Pectobacterium carotovorum/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/metabolismo , Bacillus amyloliquefaciens/clasificación , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/aislamiento & purificación , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Agentes de Control Biológico/metabolismo , Endófitos , Glucolípidos/química , Glucolípidos/aislamiento & purificación , Glucolípidos/metabolismo , Cinética , Pruebas de Sensibilidad Microbiana , Pectobacterium carotovorum/aislamiento & purificación , Pectobacterium carotovorum/patogenicidad , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Solanum tuberosum/microbiología
13.
Microb Pathog ; 121: 173-178, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29775724

RESUMEN

The use of synthetic food additive and the appearance of antibiotic resistance are at the basis of important human health problems. The substitution of synthetic compounds with new natural substances extracted from plants or microorganisms is therefore the ideal solution to this scourge. The objective of this work was to evaluate the phyto-constituents (polyphenols, flavonoids and condensed tannins), and to test the biological activities (antioxidant, antibacterial and antiviral) of the Ajuga iva (L) aerial part extracts. The antioxidant activity assayed by DPPH method showed an IC50 of 0.43 ±â€¯0.03 mg/mL. Antibacterial activity of aqueous and hydro methalonic extracts was tested against seven pathogenic bacteria (Staphylococcus aureus, Methicillin Resistant Staphylococcus aureus (MRS), Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli and Salmonella enteritidis) using the diffusion method. A Thin Layer Chromatography-bioautotography-guided was performed, and the isolated antibacterial fraction was identified by CG-MS analysis. Antiviral effect of methanolic extract performed on 4 viruses: Coxsackie Virus type B-3 (CVB-3), Adenovirus type 5 (ADV-5), Respiratory Syncytial Virus type B (RSV-B) and Herpes Simplex Virus type 2 (HSV-2) showed an activity against Coxsackie Virus. As a result of this study, the aerial parts of Ajuga iva (L) extract could be used in the food, cosmetic, medical and health sectors.


Asunto(s)
Ajuga/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Argelia , Bacterias/efectos de los fármacos , Cromatografía en Capa Delgada , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/análisis , Virus/efectos de los fármacos
14.
Microb Pathog ; 118: 202-210, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29486276

RESUMEN

The present work was developed to evaluate the in vitro antioxidant, antibacterial, antileishmanial and cytotoxic activities of Echium arenarium (Guss) extracts, and to analyze their phytochemical composition. The highest content of total phenolic compounds was obtained in the ethyl acetate extract which showed the best DPPH scavenging activity and ß-carotene bleaching inhibition (IC50 = 1.1 and 9.94 µg/mL respectively). It also exhibited the highest antibacterial activity against Gram-positive bacteria (L. monocytogenes; S. aureus; MRSA, E. faecalis and B. cereus) and antileishmanial activity against L. major (IC50 = 13.91 ±â€¯0.43 µg/mL) and L. infantum (IC50 = 9.91 ±â€¯0.15 µg/mL). Moreover, the active extract exhibited potent antiamastigote activity (IC50 = 22.48 ±â€¯0.14 µg/mL and 18.59 ±â€¯0.09 µg/mL against L. major and L. infantum respectively). Cytotoxicity studies revealed low toxicity against Raw 264.7 macrophage cell line (IC50 = 145.80 ±â€¯0.84 µg/mL, SI < 10). Luteolin-7-O-glucoside was identified as the major flavonoid component by RP-HPLC analysis. In conclusion, Echium arenarium (Guss) extract was characterized by a wide range of biological activities and could be used as a potential natural anti-infectious drug.


Asunto(s)
Antiinfecciosos/farmacología , Echium/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antibacterianos/farmacología , Antiinfecciosos/química , Antioxidantes/análisis , Antioxidantes/farmacología , Compuestos de Bifenilo , Cromatografía Líquida de Alta Presión , Flavonas/análisis , Flavonoides/análisis , Glucósidos/análisis , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmania major/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Fenoles/análisis , Fenoles/farmacología , Picratos , Células RAW 264.7/efectos de los fármacos , beta Caroteno
15.
Microb Pathog ; 115: 332-337, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29306010

RESUMEN

BACKGROUND: Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. AIM: To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). METHODS: The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. RESULTS: Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. CONCLUSION: We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species.


Asunto(s)
Criptosporidiosis/diagnóstico , Cryptosporidium/clasificación , Cryptosporidium/genética , ADN Protozoario/genética , Tetrahidrofolato Deshidrogenasa/genética , Criptosporidiosis/parasitología , Cryptosporidium/aislamiento & purificación , Heces/parasitología , Técnicas de Genotipaje , Humanos , Desnaturalización de Ácido Nucleico/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Túnez
16.
Infect Genet Evol ; 58: 237-242, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29320719

RESUMEN

Cryptosporidium is an enteric parasite infecting a wide range of hosts. It has emerged as an important cause of chronic life-threatening diarrhea in humans worldwide. Several subtypes of Cryptosporidium sp. have been described to be responsible for several large outbreaks related to water contamination in developed countries. However, there is a lack of information in the genetic diversity of Cryptosporidium among human population especially in developing countries. The present study aimed to update and report the genetic diversity of human Cryptosporidium spp. at the subtype level in an urban area of Tunisia using the 18S rRNA and gp60 gene. Genotyping of 42 Cryptosporidium positive isolates from different human populations at the 18S rRNA locus has identified three Cryptosporidium species: C. hominis (n = 20), C. parvum (n = 19), C. meleagridis (n = 2) and a co-infection C. hominis/C. meleagridis (n = 1). The sub-genotyping of these isolates at the 60-kda glycoprotein (gp60) locus was possible in 40 cases. It showed the presence of three subtype families (IIa, IIb and IIc) within C. parvum, a single subtype family within C. hominis and C. meleagridis isolates (Ia and IIIb respectively). Several subtypes were implicated in different human populations with the dominance of IaA26G1R1, IIaA15G2R1, IIdA16G1R1, IIdA22G2R1 and IIIbA26G1R1 variant respectively for C. hominis, C. parvum and C. meleagridis. The distribution of Cryptosporidium isolates in urban area of Northern Tunisia was dominated by the anthroponotic transmission via C. hominis species and the IIc subtype of C. parvum. However, zoonotic transmission is still possible in this region via zoonotic subtypes of C. parvum (IIa and IId) and C. meleagridis (IIIb). Subtype diversity was higher in this area.


Asunto(s)
Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/genética , Variación Genética , Población Urbana , ADN Protozoario , Heces/parasitología , Humanos , Filogenia , Polimorfismo Genético , ARN Ribosómico 18S/genética , Túnez/epidemiología
17.
Appl Microbiol Biotechnol ; 101(18): 6993-7006, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28766033

RESUMEN

The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Cinnamomum zeylanicum/química , Fluconazol/farmacología , Aceites Volátiles/farmacología , Pelargonium/química , Aceites de Plantas/farmacología , Antifúngicos/química , Sinergismo Farmacológico , Ergosterol/análisis , Aceites Volátiles/química , Aceites de Plantas/química
18.
Microb Pathog ; 110: 298-303, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28625824

RESUMEN

Cryptosporidium spp. are a major cause of gastrointestinal diseases in humans worldwide. While a single subtype of Cryptosporidium hominis has been shown to be responsible for several large outbreaks related to water contamination in developed countries, little is known about the epidemiology of C. hominis in developing countries. This study reports the first genetic characterization of C. hominis at the subtype level in several human populations in Tunisia using the gp60 gene. Eighteen isolates were identified as C. hominis by a restriction fragment length polymorphism (RFLP) analysis. The prevalence of this species in different human populations ranges from 1.53% to 13.04% with a high prevalence being reported in immunocompromised children (13.04%) followed by patients with malignent myeloma (5.5%) and HIV-infected patients (4.59%). The gp60 analysis on C. hominis isolates, performed in 14 cases, showed the presence of a single subtype family: "Ia". Different subtypes were identified within this family (A11G1R1, A12R3, A23G1R1, A26G1R1, A27G1R1, A28G1R1). The IaA26G1R1 subtype was the most dominant subtype described in this area (50%). Despite the high genetic diversity of Cryptosporidium spp, a low heterogeneity at the subtype level was observed within C. hominis circulating in Tunisia. This distribution is an indicator for intensive and stable anthroponotic cryptosporidiosis in this region. Besides, the presence of a unique genotype in 5 HIV-infected patients attending the same hospital ward suggests the possible occurrence of hospital-acquired infection and underlines the need to implement preventive measures to avoid nosocomial transmission.


Asunto(s)
Criptosporidiosis/epidemiología , Cryptosporidium/genética , Genes Protozoarios/genética , Polimorfismo Genético , Adulto , Niño , Preescolar , Infección Hospitalaria , Criptosporidiosis/parasitología , Criptosporidiosis/transmisión , Cryptosporidium/aislamiento & purificación , ADN Protozoario , Heces/parasitología , Variación Genética , Genotipo , Infecciones por VIH/complicaciones , Humanos , Huésped Inmunocomprometido , Filogenia , Prevalencia , ARN Ribosómico 18S/genética , Alineación de Secuencia , Túnez/epidemiología
19.
Tunis Med ; 93(6): 347-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26644094

RESUMEN

We report the first case of an imported Plasmodium ovale relapse in a Tunisian man who developed malaria three years after leaving sub- Saharan Africa. A 29-year-old Tunisian man consulted in September 2011 because of a fever, myalgia, and headache that had begun eight days earlier and persisted despite treatment with oral antibiotics. On questioning, the patient stated that he had resided three years ago for six months in Ivory Coast, where he acquired malaria. He was treated with artemether-lumefantrine. The patient said he had no recent travel to any other malaria-endemic area and had not received a blood transfusion. A first microscopy of peripheral blood smears was negative for malaria parasites. The diagnosis was established 17 days after onset of symptoms. A repeat microscopic examination of blood smears confirmed the presence of Plasmodium ovale with a parasitemia lower than 0.1%. The patient was treated with artemether lumefantrine, followed by primaquine. This case emphasizes the possibility of relapse of some plasmodial species. It highlights the importance of repeating microscopic examination of blood when the diagnosis of malaria is suspected.


Asunto(s)
Malaria/diagnóstico , Malaria/parasitología , Plasmodium ovale/aislamiento & purificación , Adulto , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina , Artemisininas/uso terapéutico , Côte d'Ivoire , Combinación de Medicamentos , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Masculino , Plasmodium ovale/efectos de los fármacos , Primaquina/uso terapéutico , Recurrencia , Viaje , Resultado del Tratamiento , Túnez
20.
World J Microbiol Biotechnol ; 31(1): 175-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384611

RESUMEN

Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 10(7) bacteria ml(-1) for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC-MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases.


Asunto(s)
Antifúngicos/metabolismo , Pseudomonas/metabolismo , Rhizoctonia/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microscopía , Datos de Secuencia Molecular , Filogenia , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Rhizoctonia/citología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA