RESUMEN
Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Rejuvenecimiento , Humanos , Ratones , Animales , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Senescencia Celular/genética , Factores de Transcripción/genética , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismoRESUMEN
Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2-STAT3-CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases.
Asunto(s)
Proteómica , Sirtuina 2 , Humanos , Ratones , Animales , Anciano , Envejecimiento/genética , Miocitos Cardíacos/metabolismo , Primates/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Transcripción STAT3/genéticaRESUMEN
Exercise benefits the whole organism, yet, how tissues across the body orchestrally respond to exercise remains enigmatic. Here, in young and old mice, with or without exercise, and exposed to infectious injury, we characterized the phenotypic and molecular adaptations to a 12-month exercise across 14 tissues/organs at single-cell resolution. Overall, exercise protects tissues from infectious injury, although more effectively in young animals, and benefits aged individuals in terms of inflammaging suppression and tissue rejuvenation, with structural improvement in the central nervous system and systemic vasculature being the most prominent. In vascular endothelial cells, we found that readjusting the rhythmic machinery via the core circadian clock protein BMAL1 delayed senescence and facilitated recovery from infectious damage, recapitulating the beneficial effects of exercise. Our study underscores the effect of exercise in reconstituting the youthful circadian clock network and provides a foundation for further investigating the interplay between exercise, aging, and immune challenges across the whole organism.
RESUMEN
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genéticaRESUMEN
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Asunto(s)
Envejecimiento , Retrovirus Endógenos , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/patología , Senescencia Celular , Retrovirus Endógenos/genética , PrimatesRESUMEN
The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.
Asunto(s)
Proteína del Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Empalme Alternativo , Núcleo Celular/metabolismo , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismoRESUMEN
Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.
Asunto(s)
Reprogramación Celular , Hígado , Animales , Desdiferenciación Celular , Hepatocitos/metabolismo , Hígado/metabolismo , Regeneración Hepática , Mamíferos , RatonesRESUMEN
Partial reprogramming by expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) for short periods of time restores a youthful epigenetic signature to aging cells and extends the life span of a premature aging mouse model. However, the effects of longer-term partial reprogramming in physiologically aging wild-type mice are unknown. Here, we performed various long-term partial reprogramming regimens, including different onset timings, during physiological aging. Long-term partial reprogramming lead to rejuvenating effects in different tissues, such as the kidney and skin, and at the organismal level; duration of the treatment determined the extent of the beneficial effects. The rejuvenating effects were associated with a reversion of the epigenetic clock and metabolic and transcriptomic changes, including reduced expression of genes involved in the inflammation, senescence and stress response pathways. Overall, our observations indicate that partial reprogramming protocols can be designed to be safe and effective in preventing age-related physiological changes. We further conclude that longer-term partial reprogramming regimens are more effective in delaying aging phenotypes than short-term reprogramming.
Asunto(s)
Envejecimiento Prematuro , Reprogramación Celular , Animales , Ratones , Reprogramación Celular/genética , Envejecimiento/genética , Senescencia Celular , Envejecimiento Prematuro/genética , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Strategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner. METHODS: We describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed nanopore sequencing of isothermal rapid viral amplification for near real-time analysis (NIRVANA). It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. FINDINGS: NIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per µL of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2-positive samples mirror the epidemiology of coronavirus disease 2019 (COVID-19). Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and pepper mild mottle virus (PMMoV) (an omnipresent virus and water-quality indicator) in municipal wastewater samples. CONCLUSIONS: NIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses. FUNDING: M.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01; M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).
Asunto(s)
COVID-19 , Gripe Humana , COVID-19/diagnóstico , Humanos , Gripe Humana/epidemiología , Mutación/genética , Pandemias , SARS-CoV-2/genéticaRESUMEN
Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9-based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24-/- mice that exhibit a premature aging phenotype. CRISPR-Cas9-based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.
Asunto(s)
Envejecimiento Prematuro , Progeria , Envejecimiento , Envejecimiento Prematuro/genética , Animales , Senescencia Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ratones , Progeria/genéticaAsunto(s)
Ingeniería Celular , Proteína Forkhead Box O3/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/genética , Xenoinjertos , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismoRESUMEN
Skin undergoes constant self-renewal, and its functional decline is a visible consequence of aging. Understanding human skin aging requires in-depth knowledge of the molecular and functional properties of various skin cell types. We performed single-cell RNA sequencing of human eyelid skin from healthy individuals across different ages and identified eleven canonical cell types, as well as six subpopulations of basal cells. Further analysis revealed progressive accumulation of photoaging-related changes and increased chronic inflammation with age. Transcriptional factors involved in the developmental process underwent early-onset decline during aging. Furthermore, inhibition of key transcription factors HES1 in fibroblasts and KLF6 in keratinocytes not only compromised cell proliferation, but also increased inflammation and cellular senescence during aging. Lastly, we found that genetic activation of HES1 or pharmacological treatment with quercetin alleviated cellular senescence of dermal fibroblasts. These findings provide a single-cell molecular framework of human skin aging, providing a rich resource for developing therapeutic strategies against aging-related skin disorders.
Asunto(s)
Análisis de la Célula Individual , Envejecimiento de la Piel/genética , Transcriptoma/genética , Adolescente , Adulto , Anciano , Dermis/citología , Epidermis/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Persona de Mediana Edad , Factor de Transcripción HES-1/metabolismo , Adulto JovenRESUMEN
DNA:RNA hybrids play key roles in both physiological and disease states by regulating chromatin and genome organization. Their homeostasis during cell differentiation and cell plasticity remains elusive. Using an isogenic human stem cell platform, we systematically characterize R-loops, DNA methylation, histone modifications, and chromatin accessibility in pluripotent cells and their lineage-differentiated derivatives. We confirm that a portion of R-loops formed co-transcriptionally at pluripotency genes in pluripotent stem cells and at lineage-controlling genes in differentiated lineages. Notably, a subset of R-loops maintained after differentiation are associated with repressive chromatin marks on silent pluripotency genes and undesired lineage genes. Moreover, in reprogrammed pluripotent cells, cell-of-origin-specific R-loops are initially present but are resolved with serial passaging. Our analysis suggests a multifaceted role of R-loops in cell fate determination that may serve as an additional layer of modulation on cell fate memory and cell plasticity.
Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Genoma Humano , Estructuras R-Loop/genética , Animales , Linaje de la Célula/genética , Células Cultivadas , Cromatina/metabolismo , Epigénesis Genética , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Transcripción GenéticaRESUMEN
Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.
Asunto(s)
Envejecimiento/genética , Restricción Calórica , Sistema Inmunológico/metabolismo , Transcriptoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratas , Análisis de la Célula IndividualRESUMEN
Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.
Asunto(s)
Envejecimiento/genética , Ovario/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma , Anciano , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Atlas como Asunto , Biomarcadores , Línea Celular Tumoral , Femenino , Células de la Granulosa/metabolismo , Humanos , Macaca fascicularis , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiologíaAsunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Glucuronidasa/uso terapéutico , Osteoartritis de la Rodilla/tratamiento farmacológico , Receptor Tipo II de Factor de Crecimiento Transformador beta/uso terapéutico , Animales , Cartílago Articular/patología , Técnicas de Cultivo de Célula , Condrocitos/patología , Humanos , Proteínas Klotho , Osteoartritis de la Rodilla/inducido químicamente , Papaína , Ratas , Proteínas Recombinantes/uso terapéuticoRESUMEN
Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable target gene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.
Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Marcación de Gen/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Utrofina/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Distrofina/genética , Interleucina-10/genética , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Activación TranscripcionalRESUMEN
CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.