Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 19(1): 84-99, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38101399

RESUMEN

Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Animales , Ratones , Células Cultivadas , Fibras Musculares Esqueléticas , Diferenciación Celular , Desarrollo de Músculos , Músculo Esquelético
2.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35005776

RESUMEN

The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.


Asunto(s)
Proteínas Aviares/metabolismo , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Receptores Notch/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , Proteínas de la Membrana/metabolismo , Mioblastos/citología , Transducción de Señal
3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884532

RESUMEN

Skeletal muscle development and regeneration rely on the successive activation of specific transcription factors that engage cellular fate, promote commitment, and drive differentiation. Emerging evidence demonstrates that epigenetic regulation of gene expression is crucial for the maintenance of the cell differentiation status upon division and, therefore, to preserve a specific cellular identity. This depends in part on the regulation of chromatin structure and its level of condensation. Chromatin architecture undergoes remodeling through changes in nucleosome composition, such as alterations in histone post-translational modifications or exchange in the type of histone variants. The mechanisms that link histone post-translational modifications and transcriptional regulation have been extensively evaluated in the context of cell fate and differentiation, whereas histone variants have attracted less attention in the field. In this review, we discuss the studies that have provided insights into the role of histone variants in the regulation of myogenic gene expression, myoblast differentiation, and maintenance of muscle cell identity.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Histonas/genética , Desarrollo de Músculos , Proteína MioD/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Humanos , Proteína MioD/genética
4.
Cell Regen ; 10(1): 31, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34595600

RESUMEN

In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.

5.
Nat Commun ; 12(1): 3450, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103504

RESUMEN

The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Chaperonas de Histonas/metabolismo , Músculo Esquelético/patología , Factores de Transcripción/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/deficiencia , Línea Celular , Linaje de la Célula/genética , Sitios Genéticos , Chaperonas de Histonas/deficiencia , Histonas/metabolismo , Lisina/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Regeneración , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Satélite del Músculo Esquelético/metabolismo , Factores de Transcripción/deficiencia
6.
Nat Commun ; 12(1): 3851, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158501

RESUMEN

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Somitos/metabolismo , Animales , Linaje de la Célula/genética , Células Cultivadas , Embrión de Pollo , Extremidades/embriología , Fibroblastos/citología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somitos/citología , Somitos/embriología
7.
Front Cell Dev Biol ; 9: 652652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869209

RESUMEN

PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.

8.
Cell Rep ; 21(7): 1982-1993, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141227

RESUMEN

State of the art techniques have been developed to isolate and analyze cells from various tissues, aiming to capture their in vivo state. However, the majority of cell isolation protocols involve lengthy mechanical and enzymatic dissociation steps followed by flow cytometry, exposing cells to stress and disrupting their physiological niche. Focusing on adult skeletal muscle stem cells, we have developed a protocol that circumvents the impact of isolation procedures and captures cells in their native quiescent state. We show that current isolation protocols induce major transcriptional changes accompanied by specific histone modifications while having negligible effects on DNA methylation. In addition to proposing a protocol to avoid isolation-induced artifacts, our study reveals previously undetected quiescence and early activation genes of potential biological interest.


Asunto(s)
Código de Histonas , Mioblastos Esqueléticos/metabolismo , Cultivo Primario de Células/métodos , Animales , Células Cultivadas , Metilación de ADN , Femenino , Ratones , Mioblastos Esqueléticos/citología , Cultivo Primario de Células/normas , Fijación del Tejido/métodos , Transcriptoma
9.
Cell Rep ; 18(8): 1996-2006, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228264

RESUMEN

MyoD is a master regulator of myogenesis. Chromatin modifications required to trigger MyoD expression are still poorly described. Here, we demonstrate that the histone demethylase LSD1/KDM1a is recruited on the MyoD core enhancer upon muscle differentiation. Depletion of Lsd1 in myoblasts precludes the removal of H3K9 methylation and the recruitment of RNA polymerase II on the core enhancer, thereby preventing transcription of the non-coding enhancer RNA required for MyoD expression (CEeRNA). Consistently, Lsd1 conditional inactivation in muscle progenitor cells during embryogenesis prevented transcription of the CEeRNA and delayed MyoD expression. Our results demonstrate that LSD1 is required for the timely expression of MyoD in limb buds and identify a new biological function for LSD1 by showing that it can activate RNA polymerase II-dependent transcription of enhancers.


Asunto(s)
Histona Demetilasas/metabolismo , Proteína MioD/metabolismo , Transcripción Genética/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/fisiología , Histonas/metabolismo , Esbozos de los Miembros/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Mioblastos/fisiología , ARN Polimerasa II/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología
10.
Development ; 143(20): 3839-3851, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27624906

RESUMEN

The molecular programme underlying tendon development has not been fully identified. Interactions with components of the musculoskeletal system are important for limb tendon formation. Limb tendons initiate their development independently of muscles; however, muscles are required for further tendon differentiation. We show that both FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are required and sufficient for SCX expression in chick undifferentiated limb cells, whereas the FGF/ERK MAPK pathway inhibits Scx expression in mouse undifferentiated limb mesodermal cells. During differentiation, muscle contraction is required to maintain SCX, TNMD and THBS2 expression in chick limbs. The activities of FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are decreased in tendons under immobilisation conditions. Application of FGF4 or TGFß2 ligands prevents SCX downregulation in immobilised limbs. TGFß2 but not FGF4 prevent TNMD and THBS2 downregulation under immobilisation conditions. We did not identify any intracellular crosstalk between both signalling pathways in their positive effect on SCX expression. Independently of each other, both FGF and TGFß promote tendon commitment of limb mesodermal cells and act downstream of mechanical forces to regulate tendon differentiation during chick limb development.


Asunto(s)
Extremidades/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Tendones/citología , Tendones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Células Madre/citología , Células Madre/metabolismo , Tendones/embriología , Factor de Crecimiento Transformador beta/genética
11.
Elife ; 52016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27554485

RESUMEN

The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner.


Asunto(s)
Proteína Jagged-2/metabolismo , Contracción Muscular , Desarrollo de Músculos , Receptores Notch/metabolismo , Células Madre/fisiología , Transactivadores/metabolismo , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica
12.
BMC Dev Biol ; 15: 39, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26518454

RESUMEN

BACKGROUND: Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral-plate-derived tissues (skeletal components and attachments) during limb development is missing. RESULTS: We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co-expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. CONCLUSION: Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development.


Asunto(s)
Huesos/embriología , Extremidades/embriología , Esbozos de los Miembros/embriología , Músculo Esquelético/embriología , Somitos/embriología , Actinas/genética , Animales , Embrión de Pollo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Electroporación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Desarrollo de Músculos/fisiología , Cadenas Ligeras de Miosina/genética , Organogénesis/genética , Organogénesis/fisiología , Regiones Promotoras Genéticas/genética
13.
Dev Biol ; 392(2): 308-23, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24882711

RESUMEN

Tight regulation of cell proliferation and differentiation is required to ensure proper growth during development and post-natal life. The source and nature of signals regulating cell proliferation are not well identified in vivo. We investigated the specific pattern of proliferating cells in mouse limbs, using the Fluorescent ubiquitynation-based cell-cycle indicator (Fucci) system, which allowed the visualization of the G1, G1/S transition and S/G2/M phases of the cell cycle in red, yellow or green fluorescent colors, respectively. We also used the retroviral RCAS system to express a Fucci cassette in chick embryos. We performed a comprehensive analysis of the cell cycle state of myogenic cells in fetal limb muscles, adult myoblast primary cultures and isolated muscle fiber cultures using the Fucci transgenic mice. We found that myonuclei of terminally differentiated muscle fibers displayed Fucci red fluorescence during mouse and chick fetal development, in adult isolated muscle fiber (ex vivo) and adult myoblast (in vitro) mouse cultures. This indicated that myonuclei exited from the cell cycle in the G1 phase and are maintained in a blocked G1-like state. We also found that cycling muscle progenitors and myoblasts in G1 phase were not completely covered by the Fucci system. During mouse fetal myogenesis, Pax7+ cells labeled with the Fucci system were observed mostly in S/G2/M phases. Proliferating cells in S/G2/M phases displayed a specific pattern in mouse fetal limbs, delineating individualized muscles. In addition, we observed more Pax7+ cells in S/G2/M phases at muscle tips, compared to the middle of muscles. These results highlight a specific spatial regionalization of cycling cells at the muscle borders and muscle-tendon interface during fetal development.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/fisiología , Extremidades/embriología , Feto/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Animales , Embrión de Pollo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Fluorescente/métodos , Factor de Transcripción PAX7/metabolismo , Células Madre/metabolismo , Ubiquitinación
14.
PLoS One ; 8(6): e68021, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840804

RESUMEN

BACKGROUND: Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis. CONCLUSIONS/SIGNIFICANCE: We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin.


Asunto(s)
Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculos Pectorales/fisiología , Receptores Notch/genética , Aletas de Animales/metabolismo , Aletas de Animales/fisiología , Animales , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Desmina/genética , Desmina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Músculos Pectorales/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/fisiología , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Fibras de Estrés/fisiología , Vinculina/genética , Vinculina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...