Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
medRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699316

RESUMEN

Scalable identification of patients with the post-acute sequelae of COVID-19 (PASC) is challenging due to a lack of reproducible precision phenotyping algorithms and the suboptimal accuracy, demographic biases, and underestimation of the PASC diagnosis code (ICD-10 U09.9). In a retrospective case-control study, we developed a precision phenotyping algorithm for identifying research cohorts of PASC patients, defined as a diagnosis of exclusion. We used longitudinal electronic health records (EHR) data from over 295 thousand patients from 14 hospitals and 20 community health centers in Massachusetts. The algorithm employs an attention mechanism to exclude sequelae that prior conditions can explain. We performed independent chart reviews to tune and validate our precision phenotyping algorithm. Our PASC phenotyping algorithm improves precision and prevalence estimation and reduces bias in identifying Long COVID patients compared to the U09.9 diagnosis code. Our algorithm identified a PASC research cohort of over 24 thousand patients (compared to about 6 thousand when using the U09.9 diagnosis code), with a 79.9 percent precision (compared to 77.8 percent from the U09.9 diagnosis code). Our estimated prevalence of PASC was 22.8 percent, which is close to the national estimates for the region. We also provide an in-depth analysis outlining the clinical attributes, encompassing identified lingering effects by organ, comorbidity profiles, and temporal differences in the risk of PASC. The PASC phenotyping method presented in this study boasts superior precision, accurately gauges the prevalence of PASC without underestimating it, and exhibits less bias in pinpointing Long COVID patients. The PASC cohort derived from our algorithm will serve as a springboard for delving into Long COVID's genetic, metabolomic, and clinical intricacies, surmounting the constraints of recent PASC cohort studies, which were hampered by their limited size and available outcome data.

2.
BMC Med ; 22(1): 216, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807092

RESUMEN

BACKGROUND: In 2020, the Lancet Commission identified 12 risk factors as priorities for prevention of dementia, and other studies identified APOE e4/e4 genotype and family history of Alzheimer's disease strongly associated with dementia outcomes; however, it is unclear how robust these relationships are across dementia subtypes and analytic scenarios. Specification curve analysis (SCA) is a new tool to probe how plausible analytical scenarios influence outcomes. METHODS: We evaluated the heterogeneity of odds ratios for 12 risk factors reported from the Lancet 2020 report and two additional strong associated non-modifiable factors (APOE e4/e4 genotype and family history of Alzheimer's disease) with dementia outcomes across 450,707 UK Biobank participants using SCA with 5357 specifications across dementia subtypes (outcomes) and analytic models (e.g., standard demographic covariates such as age or sex and/or 14 correlated risk factors). RESULTS: SCA revealed variable dementia risks by subtype and age, with associations for TBI and APOE e4/e4 robust to model specification; in contrast, diabetes showed fluctuating links with dementia subtypes. We found that unattributed dementia participants had similar risk factor profiles to participants with defined subtypes. CONCLUSIONS: We observed heterogeneity in the risk of dementia, and estimates of risk were influenced by the inclusion of a combination of other modifiable risk factors; non-modifiable demographic factors had a minimal role in analytic heterogeneity. Future studies should report multiple plausible analytic scenarios to test the robustness of their association. Considering these combinations of risk factors could be advantageous for the clinical development and evaluation of novel screening models for different types of dementia.


Asunto(s)
Bancos de Muestras Biológicas , Demencia , Humanos , Demencia/epidemiología , Factores de Riesgo , Reino Unido/epidemiología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Biobanco del Reino Unido
3.
EClinicalMedicine ; 64: 102210, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37745021

RESUMEN

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences.

4.
Environ Res ; 237(Pt 2): 116984, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37648196

RESUMEN

Robust spatio-temporal delineation of extreme climate events and accurate identification of areas that are impacted by an event is a prerequisite for identifying population-level and health-related risks. In prior research, attributes such as temperature and humidity have often been linearly assigned to the population of the study unit from the closest weather station. This could result in inaccurate event delineation and biased assessment of extreme heat exposure. We have developed a spatio-temporal model to dynamically delineate boundaries for Extreme Heat Events (EHE) across space and over time, using a relative measure of Apparent Temperature (AT). Our surface interpolation approach offers a higher spatio-temporal resolution compared to the standard nearest-station (NS) assignment method. We show that the proposed approach can provide at least 80.8 percent improvement in identification of areas and populations impacted by EHEs. This improvement in average adjusts the misclassification of about one million Californians per day of an extreme event, who would be either unidentified or misidentified under EHEs between 2017 and 2021.


Asunto(s)
Calor Extremo , Calor Extremo/efectos adversos , Tiempo (Meteorología) , Temperatura , Clima , California , Cambio Climático
5.
J Am Med Inform Assoc ; 30(12): 1985-1994, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37632234

RESUMEN

OBJECTIVE: Patients who receive most care within a single healthcare system (colloquially called a "loyalty cohort" since they typically return to the same providers) have mostly complete data within that organization's electronic health record (EHR). Loyalty cohorts have low data missingness, which can unintentionally bias research results. Using proxies of routine care and healthcare utilization metrics, we compute a per-patient score that identifies a loyalty cohort. MATERIALS AND METHODS: We implemented a computable program for the widely adopted i2b2 platform that identifies loyalty cohorts in EHRs based on a machine-learning model, which was previously validated using linked claims data. We developed a novel validation approach, which tests, using only EHR data, whether patients returned to the same healthcare system after the training period. We evaluated these tools at 3 institutions using data from 2017 to 2019. RESULTS: Loyalty cohort calculations to identify patients who returned during a 1-year follow-up yielded a mean area under the receiver operating characteristic curve of 0.77 using the original model and 0.80 after calibrating the model at individual sites. Factors such as multiple medications or visits contributed significantly at all sites. Screening tests' contributions (eg, colonoscopy) varied across sites, likely due to coding and population differences. DISCUSSION: This open-source implementation of a "loyalty score" algorithm had good predictive power. Enriching research cohorts by utilizing these low-missingness patients is a way to obtain the data completeness necessary for accurate causal analysis. CONCLUSION: i2b2 sites can use this approach to select cohorts with mostly complete EHR data.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Aprendizaje Automático , Atención a la Salud , Electrónica
6.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37490472

RESUMEN

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

7.
EBioMedicine ; 92: 104629, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37247495

RESUMEN

BACKGROUND: Alzheimer's Disease (AD) is a complex clinical phenotype with unprecedented social and economic tolls on an ageing global population. Real-world data (RWD) from electronic health records (EHRs) offer opportunities to accelerate precision drug development and scale epidemiological research on AD. A precise characterization of AD cohorts is needed to address the noise abundant in RWD. METHODS: We conducted a retrospective cohort study to develop and test computational models for AD cohort identification using clinical data from 8 Massachusetts healthcare systems. We mined temporal representations from EHR data using the transitive sequential pattern mining algorithm (tSPM) to train and validate our models. We then tested our models against a held-out test set from a review of medical records to adjudicate the presence of AD. We trained two classes of Machine Learning models, using Gradient Boosting Machine (GBM), to compare the utility of AD diagnosis records versus the tSPM temporal representations (comprising sequences of diagnosis and medication observations) from electronic medical records for characterizing AD cohorts. FINDINGS: In a group of 4985 patients, we identified 219 tSPM temporal representations (i.e., transitive sequences) of medical records for constructing the best classification models. The models with sequential features improved AD classification by a magnitude of 3-16 percent over the use of AD diagnosis codes alone. The computed cohort included 663 patients, 35 of whom had no record of AD. Six groups of tSPM sequences were identified for characterizing the AD cohorts. INTERPRETATION: We present sequential patterns of diagnosis and medication codes from electronic medical records, as digital markers of Alzheimer's Disease. Classification algorithms developed on sequential patterns can replace standard features from EHRs to enrich phenotype modelling. FUNDING: National Institutes of Health: the National Institute on Aging (RF1AG074372) and the National Institute of Allergy and Infectious Diseases (R01AI165535).


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Estudios Retrospectivos , Algoritmos , Aprendizaje Automático , Registros Electrónicos de Salud
8.
JAMA Netw Open ; 6(4): e238203, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052921

RESUMEN

This cohort study uses hospitalization and 30-day mortality risks to create a temporal profile of the severity of COVID-19 in Massachusetts from July 2021 to December 2022.


Asunto(s)
COVID-19 , Humanos , Massachusetts/epidemiología , SARS-CoV-2
9.
JAMA Netw Open ; 5(10): e2238354, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36282501

RESUMEN

Importance: The SARS-CoV-2 Omicron subvariant, BA.2, may be less severe than previous variants; however, confounding factors make interpreting the intrinsic severity challenging. Objective: To compare the adjusted risks of mortality, hospitalization, intensive care unit admission, and invasive ventilation between the BA.2 subvariant and the Omicron and Delta variants, after accounting for multiple confounders. Design, Setting, and Participants: This was a retrospective cohort study that applied an entropy balancing approach. Patients in a multicenter inpatient and outpatient system in New England with COVID-19 between March 3, 2020, and June 20, 2022, were identified. Exposures: Cases were assigned as being exposed to the Delta (B.1.617.2) variant, the Omicron (B.1.1.529) variant, or the Omicron BA.2 lineage subvariants. Main Outcomes and Measures: The primary study outcome planned before analysis was risk of 30-day mortality. Secondary outcomes included the risks of hospitalization, invasive ventilation, and intensive care unit admissions. Results: Of 102 315 confirmed COVID-19 cases (mean [SD] age, 44.2 [21.6] years; 63 482 women [62.0%]), 20 770 were labeled as Delta variants, 52 605 were labeled as the Omicron B.1.1.529 variant, and 28 940 were labeled as Omicron BA.2 subvariants. Patient cases were excluded if they occurred outside the prespecified temporal windows associated with the variants or had minimal longitudinal data in the Mass General Brigham system before COVID-19. Mortality rates were 0.7% for Delta (B.1.617.2), 0.4% for Omicron (B.1.1.529), and 0.3% for Omicron (BA.2). The adjusted odds ratio of mortality from the Delta variant compared with the Omicron BA.2 subvariants was 2.07 (95% CI, 1.04-4.10) and that of the original Omicron variant compared with the Omicron BA.2 subvariant was 2.20 (95% CI, 1.56-3.11). For all outcomes, the Omicron BA.2 subvariants were significantly less severe than that of the Omicron and Delta variants. Conclusions and Relevance: In this cohort study, after having accounted for a variety of confounding factors associated with SARS-CoV-2 outcomes, the Omicron BA.2 subvariant was found to be intrinsically less severe than both the Delta and Omicron variants. With respect to these variants, the severity profile of SARS-CoV-2 appears to be diminishing after taking into account various factors including therapeutics, vaccinations, and prior infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Adulto , COVID-19/epidemiología , Estudios de Cohortes , Estudios Retrospectivos , New England/epidemiología
10.
J Biomed Inform ; 134: 104176, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007785

RESUMEN

OBJECTIVE: For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. MATERIALS AND METHODS: For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or a single center, corresponding to transfer learning. RESULTS: Simulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. CONCLUSIONS: The SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Privacidad , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
11.
NPJ Digit Med ; 5(1): 81, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768548

RESUMEN

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period. Compared to inpatient controls, inpatient COVID-19 cases were at significant risk for angina pectoris (RR 1.30, 95% CI 1.09-1.55), heart failure (RR 1.22, 95% CI 1.10-1.35), cognitive dysfunctions (RR 1.18, 95% CI 1.07-1.31), and fatigue (RR 1.18, 95% CI 1.07-1.30). Relative to outpatient controls, outpatient COVID-19 cases were at risk for pulmonary embolism (RR 2.10, 95% CI 1.58-2.76), venous embolism (RR 1.34, 95% CI 1.17-1.54), atrial fibrillation (RR 1.30, 95% CI 1.13-1.50), type 2 diabetes (RR 1.26, 95% CI 1.16-1.36) and vitamin D deficiency (RR 1.19, 95% CI 1.09-1.30). Outpatient COVID-19 cases were also at risk for loss of smell and taste (RR 2.42, 95% CI 1.90-3.06), inflammatory neuropathy (RR 1.66, 95% CI 1.21-2.27), and cognitive dysfunction (RR 1.18, 95% CI 1.04-1.33). The incidence of post-acute cardiovascular and pulmonary conditions decreased across time among inpatient cases while the incidence of cardiovascular, digestive, and metabolic conditions increased among outpatient cases. Our study, based on a federated international network, systematically identified robust conditions associated with PASC compared to control groups, underscoring the multifaceted cardiovascular and neurological phenotype profiles of PASC.

12.
BMJ Open ; 12(6): e057725, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738646

RESUMEN

OBJECTIVE: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic. DESIGN, SETTING AND PARTICIPANTS: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was all-cause mortality rate within 28 days after hospitalisation stratified by predicted low, medium and high mortality risk at baseline. The secondary outcome was the average rate of change in laboratory values during the first week of hospitalisation. RESULTS: Baseline Charlson Comorbidity Index and laboratory values at admission were not significantly different between the first and second waves. The improvement in laboratory values over time was faster in the second wave compared with the first. The average C reactive protein rate of change was -4.72 mg/dL vs -4.14 mg/dL per day (p=0.05). The mortality rates within each risk category significantly decreased over time, with the most substantial decrease in the high-risk group (42.3% in March-April 2020 vs 30.8% in November 2020 to January 2021, p<0.001) and a moderate decrease in the intermediate-risk group (21.5% in March-April 2020 vs 14.3% in November 2020 to January 2021, p<0.001). CONCLUSIONS: Admission profiles of patients hospitalised with SARS-CoV-2 infection did not differ greatly between the first and second waves of the pandemic, but there were notable differences in laboratory improvement rates during hospitalisation. Mortality risks among patients with similar risk profiles decreased over the course of the pandemic. The improvement in laboratory values and mortality risk was consistent across multiple countries.


Asunto(s)
COVID-19 , Pandemias , Hospitalización , Humanos , Estudios Retrospectivos , SARS-CoV-2
13.
J Am Med Inform Assoc ; 29(8): 1334-1341, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35511151

RESUMEN

OBJECTIVE: The increasing translation of artificial intelligence (AI)/machine learning (ML) models into clinical practice brings an increased risk of direct harm from modeling bias; however, bias remains incompletely measured in many medical AI applications. This article aims to provide a framework for objective evaluation of medical AI from multiple aspects, focusing on binary classification models. MATERIALS AND METHODS: Using data from over 56 000 Mass General Brigham (MGB) patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in 4 AI models developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their pre-infection longitudinal medical records. Models were evaluated both retrospectively and prospectively using model-level metrics of discrimination, accuracy, and reliability, and a novel individual-level metric for error. RESULTS: We found inconsistent instances of model-level bias in the prediction models. From an individual-level aspect, however, we found most all models performing with slightly higher error rates for older patients. DISCUSSION: While a model can be biased against certain protected groups (ie, perform worse) in certain tasks, it can be at the same time biased towards another protected group (ie, perform better). As such, current bias evaluation studies may lack a full depiction of the variable effects of a model on its subpopulations. CONCLUSION: Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying roots of bias and ultimately make a change.


Asunto(s)
COVID-19 , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , SARS-CoV-2
14.
J Med Internet Res ; 24(5): e37931, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35476727

RESUMEN

BACKGROUND: Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. Electronic health record (EHR)-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. Although the need to improve classification of COVID-19 versus incidental SARS-CoV-2 is well understood, the magnitude of the problems has only been characterized in small, single-center studies. Furthermore, there have been no peer-reviewed studies evaluating methods for improving classification. OBJECTIVE: The aims of this study are to, first, quantify the frequency of incidental hospitalizations over the first 15 months of the pandemic in multiple hospital systems in the United States and, second, to apply electronic phenotyping techniques to automatically improve COVID-19 hospitalization classification. METHODS: From a retrospective EHR-based cohort in 4 US health care systems in Massachusetts, Pennsylvania, and Illinois, a random sample of 1123 SARS-CoV-2 PCR-positive patients hospitalized from March 2020 to August 2021 was manually chart-reviewed and classified as "admitted with COVID-19" (incidental) versus specifically admitted for COVID-19 ("for COVID-19"). EHR-based phenotyping was used to find feature sets to filter out incidental admissions. RESULTS: EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in an average of 26% of hospitalizations (although this varied widely over time, from 0% to 75%). The top site-specific feature sets had 79%-99% specificity with 62%-75% sensitivity, while the best-performing across-site feature sets had 71%-94% specificity with 69%-81% sensitivity. CONCLUSIONS: A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Registros Electrónicos de Salud , Hospitalización , Humanos , Estudios Retrospectivos
16.
medRxiv ; 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35350202

RESUMEN

Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. EHR-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. From a retrospective EHR-based cohort in four US healthcare systems, a random sample of 1,123 SARS-CoV-2 PCR-positive patients hospitalized between 3/2020â€"8/2021 was manually chart-reviewed and classified as admitted-with-COVID-19 (incidental) vs. specifically admitted for COVID-19 (for-COVID-19). EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in 26%. The top site-specific feature sets had 79-99% specificity with 62-75% sensitivity, while the best performing across-site feature set had 71-94% specificity with 69-81% sensitivity. A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.

18.
BMC Med ; 19(1): 249, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34565368

RESUMEN

BACKGROUND: For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could have multiple causes or are similarly seen in non-COVID patients. Accurate identification of PASC phenotypes will be important to guide future research and help the healthcare system focus its efforts and resources on adequately controlled age- and gender-specific sequelae of a COVID-19 infection. METHODS: In this retrospective electronic health record (EHR) cohort study, we applied a computational framework for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test phenotypes in two temporal windows at 3-6 and 6-9 months after the test and by age and gender. Data from longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston Metropolitan Area was used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized. RESULTS: We identified 33 phenotypes among different age/gender cohorts or time windows that were positively associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients' medical records 2 months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR 2.60, 95% CI [1.94-3.46]), alopecia (OR 3.09, 95% CI [2.53-3.76]), chest pain (OR 1.27, 95% CI [1.09-1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22-2.10]), shortness of breath (OR 1.41, 95% CI [1.22-1.64]), pneumonia (OR 1.66, 95% CI [1.28-2.16]), and type 2 diabetes mellitus (OR 1.41, 95% CI [1.22-1.64]) is one of the most significant indicators of a past COVID-19 infection. Additionally, more new phenotypes were found with increased confidence among the cohorts who were younger than 65. CONCLUSIONS: The findings of this study confirm many of the post-COVID-19 symptoms and suggest that a variety of new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those with a history of COVID-19 than those without the infection. Additionally, more than 63% of PASC phenotypes were observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of debilitating post-acute sequelae of COVID-19 among younger adults.


Asunto(s)
COVID-19 , COVID-19/complicaciones , COVID-19/diagnóstico , Humanos , Fenotipo , Estudios Retrospectivos , Síndrome Post Agudo de COVID-19
19.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533459

RESUMEN

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Asunto(s)
COVID-19 , Pandemias , Adulto , Anciano , Femenino , Hospitalización , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2
20.
medRxiv ; 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33948602

RESUMEN

For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could have multiple causes or are similarly seen in non-COVID patients. Accurate identification of phenotypes will be important to guide future research and help the healthcare system focus its efforts and resources on adequately controlled age- and gender-specific sequelae of a COVID-19 infection. In this retrospective electronic health records (EHR) cohort study, we applied a computational framework for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test phenotypes in two temporal windows at 3-6 and 6-9 months after the test and by age and gender. Data from longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston metropolitan area was used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized. We identified 33 phenotypes among different age/gender cohorts or time windows that were positively associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients’ medical records two months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR: 2.60, 95% CI [1.94 - 3.46]), alopecia (OR: 3.09, 95% CI [2.53 - 3.76]), chest pain (OR: 1.27, 95% CI [1.09 - 1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22-2.10]), shortness of breath (OR 1.41, 95% CI [1.22 - 1.64]), pneumonia (OR 1.66, 95% CI [1.28 - 2.16]), and type 2 diabetes mellitus (OR 1.41, 95% CI [1.22 - 1.64]) are some of the most significant indicators of a past COVID-19 infection. Additionally, more new phenotypes were found with increased confidence among the cohorts who were younger than 65. Our approach avoids a flood of false positive discoveries while offering a more robust probabilistic approach compared to the standard linear phenome-wide association study (PheWAS). The findings of this study confirm many of the post-COVID symptoms and suggest that a variety of new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those with a history of COVID-19 than those without the infection. Additionally, more than 63 percent of PASC phenotypes were observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of debilitating post-acute sequelae of COVID-19 among younger adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA