Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 25(12): 3364-3386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897125

RESUMEN

Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.


Asunto(s)
Euryarchaeota , Microbiota , Microbiota/genética , Euryarchaeota/genética , Humedales , Suelo/química , Metano
2.
Environ Sci Technol ; 57(31): 11552-11560, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494704

RESUMEN

Microbial communities in dark fermentation continuous systems are affected by substrate type, concentration, and product accumulation (e.g., H2 and CO2). Metatranscriptomics and quantitative PCR (qPCR) were used to assess how high organic loading rates (OLR) from 60 to 160 g total carbohydrates (TC)/L-d modify the microbial community diversity and expression of key dark fermentative genes. Overall, the microbial communities were composed of H2-producing bacteria (Clostridium butyricum), homoacetogens (Clostridium luticellarii), and lactic acid bacteria (Enteroccocus gallinarum and Leuconostoc mesenteroides). Quantification through qPCR showed that the abundance of genes encoding the formyltetrahydrofolate synthetase (fthfs, homoacetogens) and hydrogenase (hydA, H2-producing bacteria) was strongly associated with the OLR and H2 production performance. Similarly, increasing the OLR influenced the abundance of the gene transcripts responsible for H2 production and homoacetogenesis. To evaluate the effect of decreasing the H2 partial pressure, silicone oil was added to the reactor at an OLR of 138 and 160 g TC/L-d, increasing the production of H2, the copies of genes codifying for hydA and fthfs, and the genes transcripts related to H2 production and homoacetogenesis. Moreover, the metatranscriptomic analysis also showed that lactate-type fermentation and dark fermentation simultaneously occurred without compromising the reactor performance for H2 production.


Asunto(s)
Reactores Biológicos , Hidrógeno , Fermentación , Reactores Biológicos/microbiología , Hidrógeno/metabolismo , Bacterias/metabolismo
3.
PLoS One ; 18(4): e0284483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37083889

RESUMEN

SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , SARS-CoV-2/genética , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Sci Total Environ ; 871: 162137, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775167

RESUMEN

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Asunto(s)
Ecosistema , Microbiota , Suelo , Bacterias , Atmósfera , Temperatura , Microbiología del Suelo
5.
BMC Microbiol ; 23(1): 45, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809975

RESUMEN

BACKGROUND: The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. RESULTS: Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus 'Ca. Villigracilis'. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. CONCLUSION: Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.


Asunto(s)
Chloroflexi , Aguas del Alcantarillado , Chloroflexi/genética , Chloroflexi/metabolismo , Ecosistema , Hibridación Fluorescente in Situ , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Anaerobiosis , Nitrógeno/metabolismo , Oxidación-Reducción
6.
Water Res ; 229: 119446, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516560

RESUMEN

Ca. Accumulibacter was the predominant microorganism (relative FISH bio-abundance of 67 ± 5%) in a lab-scale sequential batch reactor that accomplished enhanced biological phosphorus removal (EBPR) while using glucose and acetate as the carbon sources (1:1 COD-based ratio). Both organic compounds were completely anaerobically consumed. The reactor's performance in terms of P/C ratio, phosphorous release and uptake, and overall kinetic and stoichiometric parameters were on the high end of the reported spectrum for EBPR systems (100:9.3 net mg phosphate removal per mg COD consumed when using glucose and acetate in a 1:1 ratio). The batch tests showed that, to the best of our knowledge, this is the first time a reactor enriched with Ca. Accumulibacter can putatively utilize glucose as the sole carbon source to biologically remove phosphate (COD:P (mg/mg) removal ratio of 100:6.3 when using only glucose). Thus, this research proposes that Ca. Accumulibacter directly anaerobically stored the fed glucose primarily as glycogen by utilizing the ATP provided via the hydrolysis of poly-P and secondarily as PHA by balancing its ATP utilization (glycogen generation) and formation (PHA storage). Alternative hypotheses are also discussed. The reported findings could challenge the conventional theories of glucose assimilation by Ca. Accumulibacter, and can be of significance for the biological removal of phosphorus from wastewaters with high contents of fermentable compounds or low VFAs.


Asunto(s)
Reactores Biológicos , Glucosa , Glucógeno/metabolismo , Fósforo/metabolismo , Fosfatos , Carbono/metabolismo , Acetatos/metabolismo , Adenosina Trifosfato
7.
Sci Data ; 9(1): 674, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333353

RESUMEN

High latitudes are experiencing intense ecosystem changes with climate warming. The underlying methane (CH4) cycling dynamics remain unresolved, despite its crucial climatic feedback. Atmospheric CH4 emissions are heterogeneous, resulting from local geochemical drivers, global climatic factors, and microbial production/consumption balance. Holistic studies are mandatory to capture CH4 cycling complexity. Here, we report a large set of integrated microbial and biogeochemical data from 387 samples, using a concerted sampling strategy and experimental protocols. The study followed international standards to ensure inter-comparisons of data amongst three high-latitude regions: Alaska, Siberia, and Patagonia. The dataset encompasses different representative environmental features (e.g. lake, wetland, tundra, forest soil) of these high-latitude sites and their respective heterogeneity (e.g. characteristic microtopographic patterns). The data included physicochemical parameters, greenhouse gas concentrations and emissions, organic matter characterization, trace elements and nutrients, isotopes, microbial quantification and composition. This dataset addresses the need for a robust physicochemical framework to conduct and contextualize future research on the interactions between climate change, biogeochemical cycles and microbial communities at high-latitudes.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Dióxido de Carbono/análisis , Metano/análisis , Suelo , Humedales
8.
Front Microbiol ; 13: 827228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923392

RESUMEN

Nitrogen cycle has been poorly investigated in Antarctic ecosystems. In particular, how extreme conditions of low temperature, dryness, and high radiation select the microorganisms involved in the cycle is not yet understood. Denitrification is an important step in the nitrogen cycle in which nitrate is reduced stepwise to the gases NO, N2O, and N2. Denitrification is carried out by a wide group of microorganisms spread in the phylogenetic tree. The aim of this work was to isolate and characterize denitrifying bacteria present in different cold environments from Antarctica. Bacterial isolates were obtained from lake, meltwater, sea, glacier ice, ornithogenic soil, and penguin feces samples from King George Island, Fildes peninsula in the Antarctic. Samples were taken during the deicing season in five sampling campaigns. From all the samples we were able to isolate denitrifying strains. A total of 199 bacterial isolates with the capacity to grow in anaerobic mineral media reducing nitrate at 4°C were obtained. The characterization of the isolates by 16S rRNA gene sequence analysis showed a high predominance of the genus Pseudomonas, followed by Janthinobacterium, Flavobacterium, Psychrobacter, and Yersinia. Other minor genera detected were Cryobacterium, Iodobacter, Kaistella, and Carnobacterium. The capacity to denitrify was not previously described for most of the bacteria related to our isolates and in many of them denitrifying genes were not present suggesting the presence of new genes in this extreme environment. Our work demonstrates the ubiquity of denitrification in the Maritime Antarctica and gives important information linking denitrification at cold temperature with taxa in an unequivocal way.

10.
Bioprocess Biosyst Eng ; 44(7): 1405-1421, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33721084

RESUMEN

The high temperature in which sugarcane vinasse (SV) is generated (~ 90 °C) and the positive effect of higher temperatures in biochemical reactions have motivated the evaluation of SV anaerobic digestion (AD) under extreme temperature conditions. Two-stage (acidogenic/methanogenic) and single-stage (methanogenic) AD of SV were evaluated under 70 °C in structured-bed reactors. The extreme temperature was beneficial to the acidogenic step of the two-stage AD process. The methane production, however, was hindered at 70 °C. The VMP of the single and two-stage reactors accounted, respectively, for only 13% and 7% of the production rate reported in sugarcane vinasse AD at 55 °C. At 70 °C, the main genera responsible for methane production was Methanothermobacter and the acetoclastic methanogenesis did not occur, resulting in acetic acid build up (15,800 mg L-1). These results brought a new perspective for sugarcane vinasse management, with acetic acid production alternatively to methanization. In this perspective, two-stage process would be composed of acidogenic and acetogenic reactors, and beyond acetate, hydrogen and other soluble compounds could be recovered in a complete biorefinery process.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Metano/química , Saccharum/metabolismo , Ácido Acético/química , Anaerobiosis , Archaea , Reactores Biológicos , Diseño de Equipo , Euryarchaeota , Fermentación , Hidrólisis , Análisis de Componente Principal , ARN Ribosómico 16S/metabolismo , Aguas del Alcantarillado , Temperatura
11.
MethodsX ; 7: 100754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021817

RESUMEN

Biohydrogen production potential (BHP) depends on several factors like inoculum source, substrate, pH, among many others. Batch assays are the most common strategy to evaluate such parameters, where the comparison is a challenging task due to the different procedures used. The present method introduces the first internationally validated protocol, evaluated by 8 independent laboratories from 5 different countries, to assess the biohydrogen potential. As quality criteria, a coefficient of variation of the cumulative hydrogen production (H max) was defined to be <15 %. Two options to run BHP batch tests were proposed; a manual protocol with periodic measurements of biogas production, needing conventional laboratory materials and analytical equipment for biogas characterization; and an automatic protocol, which is run in a device developed for online measurements of low biogas production. The detailed procedures for both protocol options are presented, as well as data validating them. The validation showed acceptable repeatability and reproducibility, measured as intra- and inter-laboratory coefficient of variation, which can be reduced up to 9 %.

12.
Front Microbiol ; 11: 603234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552017

RESUMEN

Although microbial communities of anaerobic bioreactors have been extensively studied using DNA-based tools, there are still several knowledge gaps regarding the microbiology of the process, in particular integration of all generated data is still limited. One understudied core phylum within anaerobic bioreactors is the phylum Chloroflexi, despite being one of the most abundant groups in anaerobic reactors. In order to address the abundance, diversity and phylogeny of this group in full-scale methanogenic reactors globally distributed, a compilation of 16S ribosomal RNA gene sequence data from 62 full-scale methanogenic reactors studied worldwide, fed either with wastewater treatment anaerobic reactors (WTARs) or solid-waste treatment anaerobic reactors (STARs), was performed. One of the barriers to overcome was comparing data generated using different primer sets and different sequencing platforms. The sequence analysis revealed that the average abundance of Chloroflexi in WTARs was higher than in STARs. Four genera belonging to the Anaerolineae class dominated both WTARs and STARs but the core populations were different. According to the phylogenetic analysis, most of the sequences formed clusters with no cultured representatives. The Anaerolineae class was more abundant in reactors with granular biomass than in reactors with disperse biomass supporting the hypothesis that Anaerolineae play an important role in granule formation and structure due to their filamentous morphology. Cross-study comparisons can be fruitfully used to understand the complexity of the anaerobic digestion process. However, more efforts are needed to standardize protocols and report metadata information.

13.
Bioresour Technol ; 297: 122442, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780241

RESUMEN

The aim of this study is to assess the performance of anaerobic digestion against co-digestion systems during the start-up stages based on key process parameters and biological indicators. Two parallel experiments treating sewage sludge alone or co-digested with low concentration of pig manure (8% vol., 2-3% in COD basis) were carried out in two lab-scale CSTR at mesophilic conditions. Same inoculant and organic loading rate sequences were applied for two consecutive runs of 79 and 90 days. According to the removal efficiencies achieved, no significant differences were encountered amongst mono-digestion and co-digestion. This observation was reinforced with the analysis of the total/active microbiome, sequencing 16S rRNA genes and transcripts. The addition of a co-substrate at low concentration had a negligible effect on the total/active microbial communities; they evolved following the same pattern. This might be an advantage in order to upgrade existing wastewater treatment plants to become centralized biogas facilities.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Estiércol , Metano , ARN Ribosómico 16S , Porcinos
14.
Bioprocess Biosyst Eng ; 42(12): 2035-2046, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31506821

RESUMEN

The aim of this study was to understand how the microbial community adapted to changes, including a pH perturbation, occurring during the start-up and operation processes in a full-scale methanogenic UASB reactor designed to treat dairy wastewater. The reactor performance, prokaryotic community, and lipid degradation capacity were monitored over a 9-month period. The methanogenic community was studied by mcrA/mrtA gene copy-number quantification and methanogenic activity tests. A diverse prokaryotic community characterized the seeding sludge as assessed by sequencing the V4 region of the 16S rRNA gene. As the feeding began, the bacterial community was dominated by Firmicutes, Synergistetes, and Proteobacteria phyla. After an accidental pH increase that affected the microbial community structure, a sharp increase in the relative abundance of Clostridia and a decrease in the mcrA/mrtA gene copy number and methanogenic activity were observed. After a recovery period, the microbial population regained diversity and methanogenic activity. Alkaline shocks are likely to happen in dairy wastewater treatment because of the caustic soda usage. In this work, the plasticity of the prokaryotic community was key to surviving changes to the external environment and supporting biogas production in the reactor.


Asunto(s)
Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Microbiología del Agua , Purificación del Agua , Anaerobiosis , Archaea/metabolismo , Bacterias Anaerobias/clasificación , Biocombustibles , Clostridium/clasificación , Industria Lechera , Euryarchaeota/metabolismo , Firmicutes/clasificación , Concentración de Iones de Hidrógeno , Metano/metabolismo , Microbiota , Proteobacteria/clasificación , ARN Ribosómico 16S/genética , Aguas Residuales
15.
Int J Syst Evol Microbiol ; 68(5): 1627-1632, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29595416

RESUMEN

The genus Coprothermobacter (initially named Thermobacteroides) is currently placed within the phylum Firmicutes. Early 16S rRNA gene based phylogenetic studies pointed out the great differences between Coprothermobacter and other members of the Firmicutes, revealing that it constitutes a new deep branching lineage. Over the years, several studies based on 16S rRNA gene and whole genome sequences have indicated that Coprothermobacter is very distant phylogenetically to all other bacteria, supporting its placement in a distinct deeply rooted novel phylum. In view of this, we propose its allocation to the new family Coprothermobacteraceae within the novel order Coprothermobacterales, the new class Coprothermobacteria, and the new phylum Coprothermobacterota, and an emended description of the family Thermodesulfobiaceae.


Asunto(s)
Firmicutes/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Appl Microbiol Biotechnol ; 100(7): 3371-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26825820

RESUMEN

To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.


Asunto(s)
Reactores Biológicos/normas , Fermentación , Hidrógeno/metabolismo , Consorcios Microbianos/genética , ARN Ribosómico 16S/genética , Anaerobiosis , Clostridium/clasificación , Clostridium/genética , Clostridium/metabolismo , Enterobacter/clasificación , Enterobacter/genética , Enterobacter/metabolismo , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/metabolismo , América Latina , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo , Thermotoga maritima/clasificación , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Veillonellaceae/clasificación , Veillonellaceae/genética , Veillonellaceae/metabolismo
17.
Anaerobe ; 34: 94-105, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25891935

RESUMEN

Bio-hydrogen production from sugarcane vinasse in anaerobic up-flow packed-bed reactors (APBR) was evaluated. Four types of support materials, expanded clay (EC), charcoal (Ch), porous ceramic (PC), and low-density polyethylene (LDP) were tested as support for biomass attachment. APBR (working volume - 2.3 L) were operated in parallel at a hydraulic retention time of 24 h, an organic loading rate of 36.2 kg-COD m(-3) d(-1), at 25 °C. Maximum volumetric hydrogen production values of 509.5, 404, 81.4 and 10.3 mL-H2 d(-1) L(-1)reactor and maximum yields of 3.2, 2.6, 0.4 and 0.05 mol-H2 mol(-1) carbohydrates total, were observed during the monitoring of the reactors filled with LDP, EC, Ch and PC, respectively. Thus, indicating the strong influence of the support material on H2 production. LDP was the most appropriate material for hydrogen production among the materials evaluated. 16S rRNA gene by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis and scanning electron microscopy confirmed the selection of different microbial populations. 454-pyrosequencing performed on samples from APBR filled with LDP revealed the presence of hydrogen-producing organisms (Clostridium and Pectinatus), lactic acid bacteria and non-fermentative organisms.


Asunto(s)
Reactores Biológicos/microbiología , Ácidos Carboxílicos/metabolismo , Hidrógeno/metabolismo , Saccharum/metabolismo , Anaerobiosis , Biota , ADN Ribosómico/química , ADN Ribosómico/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
18.
Bioresour Technol ; 186: 81-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25812810

RESUMEN

This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production.


Asunto(s)
Anaerobiosis/fisiología , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Thermoanaerobacterium/fisiología , Eliminación de Residuos Líquidos/métodos , Brasil , Hidrógeno/metabolismo , Metagenómica/métodos , Polietileno/metabolismo
19.
Environ Technol ; 35(13-16): 1811-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24956774

RESUMEN

The microbial community structure of the biomass selected in two distinctly inoculated anaerobic oxidation of ammonium (anammox) reactors was investigated and compared with the help of data obtained from 454-pyrosequencing analyses. The anammox reactors were operated for 550 days and seeded with different sludges: sediment from a constructed wetland (reactor I) and biomass from an aerated lagoon part of the oil-refinery wastewater treatment plant (reactor II). The anammox diversity in the inocula was evaluated by 16S rRNA gene-cloning analysis. The diversity of anammox bacteria was greater in the sludge from the oil-refinery (three of the five known genera of anammox were detected) than in the wetland sludge, in which only Candidatus Brocadia was observed. Pyrosequencing analysis demonstrated that the community enriched in both reactors had differing compositions despite the nearly similar operational conditions applied. The dominant phyla detected in both reactors were Proteobacteria, Chloroflexi, Planctomycetes, and Acidobacteria. The phylum Bacteroidetes, which is frequently observed in anammox reactors, was not detected. However, Acidobacteria and GN04 phyla were observed for the first time, suggesting their importance for this process. Our results suggest that, under similar operational conditions, anammox populations (Ca. Brocadia sinica and Ca. Brocadia sp. 40) were selected in both reactors despite the differences between the two initial inocula. Taken together, these results indicated that the type of inoculum and the culture conditions are key determinants of the general microbial composition of the biomass produced in the reactors. Operational conditions alone might play an important role in anammox selection.


Asunto(s)
Compuestos de Amonio/metabolismo , Reactores Biológicos/microbiología , Consorcios Microbianos , ARN Ribosómico 16S/genética , Anaerobiosis , Desnitrificación , Nitrificación , Oxidación-Reducción , Análisis de Secuencia de ADN
20.
Bioresour Technol ; 166: 103-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907569

RESUMEN

The effects of phenol on the nitrogen removal performance of a sequencing batch reactor (SBR) with anammox activity and on the microbial community within the reactor were evaluated. A phenol concentration of 300 mg L(-1) reduced the ammonium-nitrogen removal efficiency of the SBR from 96.5% to 47%. The addition of phenol changed the microbial community structure and composition considerably, as shown by denaturing gradient gel electrophoresis and 454 pyrosequencing of 16S rRNA genes. Some phyla, such as Proteobacteria, Verrucomicrobia, and Firmicutes, increased in abundance, whereas others, such as Acidobacteria, Chloroflexi, Planctomycetes, GN04, WS3, and NKB19, decreased. The diversity of the anammox bacteria was also affected by phenol: sequences related to Candidatus Brocadia fulgida were no longer detected, whereas sequences related to Ca. Brocadia sp. 40 and Ca. Jettenia asiatica persisted. These results indicate that phenol adversely affects anammox metabolism and changes the bacterial community within the anammox reactor.


Asunto(s)
Amoníaco/metabolismo , Bacterias Aerobias/efectos de los fármacos , Bacterias Aerobias/metabolismo , Reactores Biológicos , Fenoles/toxicidad , Bacterias Aerobias/genética , Secuencia de Bases , Electroforesis en Gel de Gradiente Desnaturalizante , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Oxidación-Reducción , Dinámica Poblacional , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA