Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496508

RESUMEN

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

2.
Pediatrics ; 153(Suppl 1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165240

RESUMEN

In 2020, midway through the Collaborative Improvement and Innovation Network to Advance Care for Children with Medical Complexity project, the coronavirus disease 2019 pandemic erupted and caused significant disruptions for the 10 participating state teams, the project leadership, and collaborative partner organizations. Clinics shut down for in-person care, a scramble ensued to quickly leverage telehealth to fill the gap, and the trauma caused by anxiety, isolation, and exhaustion affected the health and wellbeing of children, families, and clinicians alike. We conducted a series of key informant interviews and surveys, alongside other process measures, to learn from state teams what it was like "on the ground" to try to continue improving care delivery, child quality of life, and family wellbeing under such upheaval. In this article, we synthesize qualitative and descriptive findings from these varied data sources within the framework of the trauma-informed principles we applied as a leadership team to prevent burnout, increase resilience, and maintain progress among all project participants, especially clinicians and the uniquely vulnerable family leaders. Lessons learned will be offered that can be applied to future natural and human-made emergencies that impact responsive pediatric care delivery improvement.


Asunto(s)
Liderazgo , Mejoramiento de la Calidad , Humanos , Niño , Pandemias , Calidad de Vida , Ansiedad
4.
J Am Soc Mass Spectrom ; 34(4): 649-667, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912488

RESUMEN

The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.


Asunto(s)
Enfermedad de Alzheimer , Neuropéptidos , Humanos , Enfermedad de Alzheimer/patología , Cromograninas/metabolismo , Cromogranina A/metabolismo , Fragmentos de Péptidos/metabolismo , Neuropéptidos/metabolismo , Encéfalo/metabolismo , Biomarcadores , Péptido Hidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismo
5.
Sci Rep ; 12(1): 22255, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564457

RESUMEN

Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Femenino , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Factor de Crecimiento Placentario/uso terapéutico , Inflamación/tratamiento farmacológico , Amidas/uso terapéutico
6.
Brain Commun ; 4(3): fcac103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611312

RESUMEN

Proteomic characterization of human brain tissue is increasingly utilized to identify potential novel biomarkers and drug targets for a variety of neurological diseases. In whole-tissue studies, results may be driven by changes in the proportion of the largest and most abundant organelles or tissue cell-type composition. Spatial proteomics approaches enhance our knowledge of disease mechanisms and changing signalling pathways at the subcellular level by taking into account the importance of cellular localization, which critically influences protein function. Density gradient-based ultracentrifugation methods allow for subcellular fractionation and have been utilized in cell lines, mouse and human brain tissue to quantify thousands of proteins in specific enriched organelles such as the pre- and post-synapse. Serial ultracentrifugation methods allow for the analysis of multiple cellular organelles from the same biological sample, and to our knowledge have not been previously applied to frozen post-mortem human brain tissue. The use of frozen human tissue for tissue fractionation faces two major challenges, the post-mortem interval, during which proteins may leach from their usual location into the cytosol, and freezing, which results in membrane breakdown. Despite these challenges, in this proof-of-concept study, we show that the majority of proteins segregate reproducibly into crude density-based centrifugation fractions, that the fractions are enriched for the appropriate organellar markers and that significant differences in protein localization can be observed between tissue from individuals with Alzheimer's disease and control individuals.

7.
Front Neurosci ; 16: 1023665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36817099

RESUMEN

Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods: We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results: Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion: These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA