Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830764

RESUMEN

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's Disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.Significance Statement Multiple TREM2 agonist antibodies are investigated in mouse models of Alzheimer's Disease and Multiple Sclerosis. Despite agonism in culture models and after acute dosing in mice, antibodies do not show benefit in overall AD pathology and worsen recovery after demyelination.

2.
Cell Rep ; 31(13): 107843, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610143

RESUMEN

Damage-associated microglia (DAM) profiles observed in Alzheimer's disease (AD)-related mouse models reflect an activation state that could modulate AD risk or progression. To learn whether human AD microglia (HAM) display a similar profile, we develop a method for purifying cell types from frozen cerebrocortical tissues for RNA-seq analysis, allowing better transcriptome coverage than typical single-nucleus RNA-seq approaches. The HAM profile we observe bears little resemblance to the DAM profile. Instead, HAM display an enhanced human aging profile, in addition to other disease-related changes such as APOE upregulation. Analyses of whole-tissue RNA-seq and single-cell/nucleus RNA-seq datasets corroborate our findings and suggest that the lack of DAM response in human microglia occurs specifically in AD tissues, not other neurodegenerative settings. These results, which can be browsed at http://research-pub.gene.com/BrainMyeloidLandscape, provide a genome-wide picture of microglial activation in human AD and highlight considerable differences between mouse models and human disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Senescencia Celular/genética , Microglía/metabolismo , Microglía/patología , Activación Transcripcional/genética , Anciano , Anciano de 80 o más Años , Animales , Bases de Datos Genéticas , Femenino , Lóbulo Frontal/patología , Secciones por Congelación , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Xenoinjertos , Humanos , Masculino , Ratones , Monocitos/metabolismo , Esclerosis Múltiple/patología , Fenotipo , Reproducibilidad de los Resultados , Factores de Riesgo , Lóbulo Temporal/patología
3.
Cell Rep ; 25(3): 544-550.e3, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332636

RESUMEN

Emerging evidence suggests that neuronal signaling is important for oligodendrocyte myelination; however, the necessity of this signaling during development is unclear. By eliminating dynamic neuronal signaling along the developing optic nerve, we find that oligodendrocyte differentiation is not dependent on neuronal signaling and that the initiation of myelination is dependent on a permissive substrate, namely supra-threshold axon caliber. Furthermore, we show that loss of dynamic neuronal signaling results in hypermyelination of axons. We propose that oligodendrocyte differentiation is regulated by non-neuronal factors during optic nerve development, whereas myelination is sensitive to the biophysical properties of axonal diameter.


Asunto(s)
Axones/fisiología , Encéfalo/fisiología , Vaina de Mielina/fisiología , Neurogénesis , Oligodendroglía/fisiología , Nervio Óptico/fisiología , Animales , Axones/química , Encéfalo/citología , Diferenciación Celular , Proliferación Celular , Femenino , Masculino , Ratones , Ratones Noqueados , Oligodendroglía/citología , Nervio Óptico/citología , Fosfohidrolasa PTEN/fisiología , Transducción de Señal
4.
Channels (Austin) ; 12(1): 299-310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30126342

RESUMEN

Heteromers of Kv7.2/Kv7.3 subunits constitute the main substrate of the neuronal M-current that limits neuronal hyper-excitability and firing frequency. Calmodulin (CaM) binding is essential for surface expression of Kv7 channels, and disruption of this interaction leads to diseases ranging from mild epilepsy to early onset encephalopathy. In this study, we addressed the impact of a charge neutralizing mutation located at the periphery of helix B (K526N). We found that, CaM binding and surface expression was impaired, although current amplitude was not altered. Currents were reduced at a faster rate after activation of a voltage-dependent phosphatase, suggesting that phosphatidylinositol-4,5-bisphosphate (PIP2) binding was weaker. In contrast, a charge neutralizing mutation located at the periphery of helix A (R333Q) did not affect CaM binding, but impaired trafficking and led to a reduction in current amplitude. Taken together, these results suggest that disruption of CaM-dependent or CaM-independent trafficking of Kv7.2/Kv7.3 channels can lead to pathology regardless of the consequences on the macroscopic ionic flow through the channel.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Animales , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Unión Proteica , Dominios Proteicos , Propiedades de Superficie , Xenopus
5.
Neuron ; 96(5): 1003-1012.e7, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103804

RESUMEN

Blood-brain barrier (BBB) disruption alters the composition of the brain microenvironment by allowing blood proteins into the CNS. However, whether blood-derived molecules serve as extrinsic inhibitors of remyelination is unknown. Here we show that the coagulation factor fibrinogen activates the bone morphogenetic protein (BMP) signaling pathway in oligodendrocyte progenitor cells (OPCs) and suppresses remyelination. Fibrinogen induces phosphorylation of Smad 1/5/8 and inhibits OPC differentiation into myelinating oligodendrocytes (OLs) while promoting an astrocytic fate in vitro. Fibrinogen effects are rescued by BMP type I receptor inhibition using dorsomorphin homolog 1 (DMH1) or CRISPR/Cas9 activin A receptor type I (ACVR1) knockout in OPCs. Fibrinogen and the BMP target Id2 are increased in demyelinated multiple sclerosis (MS) lesions. Therapeutic depletion of fibrinogen decreases BMP signaling and enhances remyelination in vivo. Targeting fibrinogen may be an upstream therapeutic strategy to promote the regenerative potential of CNS progenitors in diseases with remyelination failure.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Fibrinógeno/farmacología , Células Precursoras de Oligodendrocitos/metabolismo , Remielinización/efectos de los fármacos , Receptores de Activinas Tipo I/efectos de los fármacos , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Fibrinógeno/antagonistas & inhibidores , Lisofosfatidilcolinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Plásmidos/genética , Transducción de Señal/efectos de los fármacos
6.
J Neurosci ; 36(26): 6937-48, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358452

RESUMEN

UNLABELLED: Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT: Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Nervio Óptico/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos/genética , Antígenos/metabolismo , Toxina del Cólera/metabolismo , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/ultraestructura , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Conducción Nerviosa/genética , Nervio Óptico/ultraestructura , Organogénesis/genética , Organogénesis/fisiología , Estimulación Luminosa , Proteoglicanos/genética , Proteoglicanos/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vías Visuales/ultraestructura
7.
Nat Med ; 20(8): 954-960, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997607

RESUMEN

Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Esclerosis Múltiple/tratamiento farmacológico , Antagonistas Muscarínicos/aislamiento & purificación , Fibras Nerviosas Mielínicas/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Clemastina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Antagonistas de los Receptores Histamínicos H1/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antagonistas Muscarínicos/farmacología , Nanoestructuras , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Ratas , Ratas Sprague-Dawley , Regeneración/efectos de los fármacos
8.
J Neurosci ; 33(19): 8454-62, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658182

RESUMEN

The temporal and spatial patterning involved in the specification, differentiation, and myelination by oligodendroglia is coordinated in part by the activation and repression of various transcriptional programs. Olig2 is a basic helix-loop-helix transcription factor necessary for oligodendroglial development and expressed continuously throughout the lineage. Despite evidence for the critical role of Olig2 in oligodendroglial specification and differentiation, the function for Olig2 during later stages of oligodendroglial development, namely, the transition into mature oligodendrocytes (OLs) and the formation of the myelin sheath, remains unclear. To address the possibility for a stage-specific role, we deleted Olig2 in oligodendrocyte precursor cells (OPCs) under the control of the CNPase-promoter or in immature OLs under the inducible proteolipid protein promoter. As expected, ablation of Olig2 in OPCs significantly inhibits differentiation, resulting in hypomyelination. However, deletion of the Olig2 gene in immature OLs significantly enhances the maturation process and accelerates the kinetics of myelination/remyelination. Underlying the stage-specific roles for Olig2 is the compensatory expression and function of Olig1, a transcription factor that promotes OL maturation and (re)myelination. Olig1 expression is significantly reduced upon Olig2 deletion in OPCs but is dramatically increased by nearly threefold when deleted in immature OLs. By enforcing expression of Olig1 into OPCs in a null Olig2 background, we demonstrate that overexpression of Olig1 is sufficient to rescue the differentiation phenotype and partially compensates for the Olig2 deletion in vitro. Our results suggest a stage-specific regulatory role for Olig2, mediated by Olig1 that conveys opposing functions on the differentiation and maturation of oligodendrocytes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Diferenciación Celular/fisiología , Proteínas del Tejido Nervioso/deficiencia , Oligodendroglía/fisiología , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/ultraestructura , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transferasas Intramoleculares/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Inhibidores de la Monoaminooxidasa/toxicidad , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/ultraestructura , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/efectos de los fármacos , Transfección , Proteína de Unión al GTP ran/metabolismo
9.
PLoS One ; 6(9): e25508, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980481

RESUMEN

M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Transporte de Proteínas
10.
J Neurosci ; 30(27): 9316-23, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610766

RESUMEN

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are the principal subunits underlying the potassium M-current, which exerts a strong control on neuronal excitability. KCNQ3 subunits coassemble with KCNQ2 to form functional heteromeric channels that are specifically transported to the axonal initial segment and nodes of Ranvier. In contrast, there is no evidence for functional homomeric KCNQ3 channels in neurons, and it appears that these are inefficiently trafficked to the plasma membrane. Among eukaryotic potassium channels, the KCNQ3 subunit is unusual because it has an alanine in place of a threonine at the pore inner vestibule, three residues upstream of the GYG signature sequence of the selectivity filter. This residue is critical for the potentiation of the current after heteromerization, but the mechanism is unknown. We report that the presence of this uncommon residue at position 315 has a strong impact on the stability of the homotetramers and on channel trafficking. Wild-type KCNQ3 expressed alone is retained within the endoplasmic reticulum, and this mechanism is overcome by the substitution of threonine for Ala315. KCNQ3 subunits require assembly with KCNQ2 to exit this compartment, whereas KCNQ3-A315T is no longer dependent on KCNQ2 to form channels that are efficiently trafficked to the plasma membrane. The presence of this alanine, therefore, plays an important role in regulating the subunit composition of functional M-channels expressed at the surface of neurons.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/metabolismo , Alanina/metabolismo , Sustitución de Aminoácidos/genética , Animales , Proteínas Bacterianas/genética , Línea Celular Transformada , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación/métodos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Oocitos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Relación Estructura-Actividad , Tetraetilamonio/farmacocinética , Transducción Genética/métodos , Xenopus
11.
Nat Neurosci ; 13(3): 287-289, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20173746

RESUMEN

We found that demyelinated axons formed functional glutamatergic synapses onto adult-born NG2(+) oligodendrocyte progenitor cells (OPCs) migrating from the subventricular zone after focal demyelination of adult mice corpus callosum. This glutamatergic input was substantially reduced compared with endogenous callosal OPCs 1 week after lesion and was lost on differentiation into oligodendrocytes. Therefore, axon-oligodendrocyte progenitor synapse formation is a transient and regulated step that occurs during remyelination of callosal axons.


Asunto(s)
Células Madre Adultas/fisiología , Cuerpo Calloso/fisiopatología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Nicho de Células Madre/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Diferenciación Celular , Movimiento Celular , Cuerpo Calloso/lesiones , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Neuronas/fisiología , Transmisión Sináptica/fisiología
12.
J Biol Chem ; 284(31): 20668-75, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19494108

RESUMEN

The potential regulation of protein trafficking by calmodulin (CaM) is a novel concept that remains to be substantiated. We proposed that KCNQ2 K+ channel trafficking is regulated by CaM binding to the C-terminal A and B helices. Here we show that the L339R mutation in helix A, which is linked to human benign neonatal convulsions, perturbs CaM binding to KCNQ2 channels and prevents their correct trafficking to the plasma membrane. We used glutathione S-transferase fused to helices A and B to examine the impact of this and other mutations in helix A (I340A, I340E, A343D, and R353G) on the interaction with CaM. The process appears to require at least two steps; the first involves the transient association of CaM with KCNQ2, and in the second, the complex adopts an "active" conformation that is more stable and is that which confers the capacity to exit the endoplasmic reticulum. Significantly, the mutations that we have analyzed mainly affect the stability of the active configuration of the complex, whereas Ca2+ alone appears to affect the initial binding step. The spectrum of responses from this collection of mutants revealed a strong correlation between adopting the active conformation and channel trafficking in mammalian cells. These data are entirely consistent with the concept that CaM bound to KCNQ2 acts as a Ca2+ sensor, conferring Ca2+ dependence to the trafficking of the channel to the plasma membrane and fully explaining the requirement of CaM binding for KCNQ2 function.


Asunto(s)
Calmodulina/metabolismo , Retículo Endoplásmico/metabolismo , Canal de Potasio KCNQ2/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Canal de Potasio KCNQ2/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Espectrometría de Fluorescencia , Xenopus
13.
Hum Genet ; 123(1): 41-53, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18030493

RESUMEN

Mutations in the potassium channel gene KCNQ4 underlie DFNA2, a subtype of autosomal dominant progressive, high-frequency hearing loss. Based on a phenotype-guided mutational screening we have identified a novel mutation c.886G>A, leading to the p.G296S substitution in the pore region of KCNQ4 channel. The possible impact of this mutation on total KCNQ4 protein expression, relative surface expression and channel function was investigated. When the G296S mutant was expressed in Xenopus oocytes, electrophysiological recordings did not show voltage-activated K(+) currents. The p.G296S mutation impaired KCNQ4 channel activity in two manners. It greatly reduced surface expression and, secondarily, abolished channel function. The deficient expression at the cell surface membrane was further confirmed in non-permeabilized NIH-3T3 cells transfected with the mutant KCNQ4 tagged with the hemagglutinin epitope in the extracellular S1-S2 linker. Co-expression of mutant and wild type KCNQ4 in oocytes was performed to mimic the heterozygous condition of the p.G296S mutation in the patients. The results showed that the G296S mutant exerts a strong dominant-negative effect on potassium currents by reducing the wild type KCNQ4 channel expression at the cell surface. This is the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2.


Asunto(s)
Sordera/genética , Canales de Potasio KCNQ/genética , Mutación , Células 3T3 , Secuencia de Aminoácidos , Animales , Western Blotting , Membrana Celular/metabolismo , Femenino , Humanos , Activación del Canal Iónico , Masculino , Ratones , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Linaje , Homología de Secuencia de Aminoácido , Xenopus laevis
14.
FASEB J ; 22(4): 1135-43, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17993630

RESUMEN

Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Canal de Potasio KCNQ3/metabolismo , Mutación , Técnicas de Placa-Clamp , Transporte de Proteínas
15.
J Neurosci ; 24(41): 9146-52, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483133

RESUMEN

The non-inactivating potassium M-current exerts a strong influence on neuronal excitability. The channels responsible for this current are made up of KCNQ subunits, and mutations in most of these produce human pathologies. Notably, in terms of excitation, mutations in either KCNQ2 or KCNQ3 lead to benign neonatal familial convulsions. Although a mere reduction of 25% in KCNQ2/3 function can increase excitability to epileptogenic levels, the potentiation of these subunits has anti-epileptogenic effects. After KCNQ2/3 heteromerization, current levels can augment as much as 10-fold, and we have discovered that there are three processes underlying this potentiation. First, there is an increase in the number of channels inserted in the membrane after heteromerization of the C-terminal region. Second, the N-terminal domain from KCNQ2 exerts a negative influence on the current level. Finally, Ala 315 of KCNQ3, a residue located in the inner vestibule after the selectivity filter, plays a critical role in preventing current flow in KCNQ3 homomeric channels, whereas it is permissive in heteromers in combination with Thr at the equivalent 276 position of KCNQ2.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Células Cultivadas , Técnicas de Transferencia de Gen , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ2 , Canal de Potasio KCNQ3 , Microinyecciones , Oocitos/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Xenopus
16.
Mar Environ Res ; 54(3-5): 431-6, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12408598

RESUMEN

Haemocytes play an essential role in the internal defence of molluscs. It has been reported that organic xenobiotics commonly found as pollutants in the marine environment impair defence capabilities of haemocytes. The purpose of the present study was to investigate the effects of benzo(a)pyrene [B(a)P] on the integrity of the actin cytoskeleton and on endocytosis in haemocytes and to see if these effects are related to generation of reactive oxygen species. Haemocytes were exposed in vitro to B(a)P (0.5-40 microg/ml) for 1 h. Cell viability (using 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide or XTT assay) indicated that selected doses were sublethal. Uptake of neutral red was significantly decreased in a dose-dependent manner in B(a)P-treated haemocytes. Distribution of actin filaments, labeled with rhodamine-conjugated phalloidin, was altered in haemocytes treated with 20 or 40 microg/ml B(a)P. These effects could be related to an increased production of superoxide anion during B(a)P metabolism, as detected by the nitroblue tetrazolium (NBT) reduction assay in haemocytes treated with > or = 10 microg/ml B(a)P.


Asunto(s)
Citoesqueleto de Actina/patología , Benzo(a)pireno/efectos adversos , Bivalvos/fisiología , Especies Reactivas de Oxígeno/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Animales , Bivalvos/citología , Colorantes/farmacocinética , Endocitosis , Hemocitos/patología , Rojo Neutro/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...