Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590706

RESUMEN

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Asunto(s)
Actinomycetales , Microbiota , Actinomycetales/genética , Agar/metabolismo , Bacterias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , ARN Ribosómico 16S/genética , Arena
2.
Front Microbiol ; 15: 1347119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638899

RESUMEN

The versatility of plastic has resulted in huge amounts being consumed annually. Mismanagement of post-consumption plastic material has led to plastic waste pollution. Biodegradation of plastic by microorganisms has emerged as a potential solution to this problem. Therefore, this study aimed to investigate the microbial communities involved in the biodegradation of polypropylene (PP). Mangrove soil was enriched with virgin PP sheets or chemically pretreated PP comparing between 2 and 4 months enrichment to promote the growth of bacteria involved in PP biodegradation. The diversity of the resulting microbial communities was accessed through 16S metagenomic sequencing. The results indicated that Xanthomonadaceae, unclassified Gaiellales, and Nocardioidaceae were promoted during the enrichment. Additionally, shotgun metagenomics was used to investigate enzymes involved in plastic biodegradation. The results revealed the presence of various putative plastic-degrading enzymes in the mangrove soil, including alcohol dehydrogenase, aldehyde dehydrogenase, and alkane hydroxylase. The degradation of PP plastic was determined using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Water Contact Angle measurements. The FTIR spectra showed a reduced peak intensity of enriched and pretreated PP compared to the control. SEM images revealed the presence of bacterial biofilms as well as cracks on the PP surface. Corresponding to the FTIR and SEM analysis, the water contact angle measurement indicated a decrease in the hydrophobicity of PP and pretreated PP surface during the enrichment.

3.
Molecules ; 28(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570885

RESUMEN

Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.


Asunto(s)
Actinobacteria , Antiinfecciosos , Productos Biológicos , Actinobacteria/metabolismo , Actinomyces/metabolismo , Ecosistema , Antiinfecciosos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/metabolismo
4.
Microorganisms ; 10(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630461

RESUMEN

In this study, plant-root-associated Bacillus species were evaluated as antifungal biocontrol agents by analyzing the production of surface bioactive molecules known as lipopeptide biosurfactants. This study aimed to isolate and characterize antifungal biosurfactant-producing Bacillus bacterium. Bacillusvelezensis PW192 was isolated from the rhizosphere of Lagerstroemia macrocarpa var macrocarpa and identified based on phylogenetic analysis of the 16S rRNA gene. The biosurfactant was excreted to cultured supernatant and exhibited emulsification power up to 60% and a decrease in surface tension from 72 in distilled water to 21 mN/m. The surface tension properties were stable in a broad range of pH from 6 to 10, in high temperatures up to 100 °C, and in salinities with a NaCl concentration up to 12% (w/v). Starting from 0.5 mg of acid, precipitated crude biosurfactant exhibited antifungal activity toward Anthracnose, caused by the phytopathogens Colletotrichum gloeosporioides and C. musae. The chemical structures of the biosurfactant were structurally characterized as lipopeptides fengycin A and fengycin B. The stability of the biosurfactant, as well as the antifungal properties of B. velezensis PW192, can potentially make them useful as agricultural biocontrol agents, as well as in other biotechnological applications.

5.
J Gen Appl Microbiol ; 65(4): 197-203, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30814437

RESUMEN

Spirotetronate compounds are polyketide secondary metabolites with diverse biological functions, such as antibacterial, antitumor and antiviral activities. Three pure spirotetronate compounds (2EPS-A, -B, -C) isolated from Actinomadura strain 2EPS showed inhibitory activity against dengue virus serotype 2 (DENV-2). 2EPS-A, -B and -C demonstrated the LC50 values of 11.6, 27.5 and 12.0 µg/ml, respectively, in a test of cytotoxicity to Vero cells. The least cytotoxic, 2EPS-B, was further analyzed for its impact on viral propagation in a cell-based replication assay. At a concentration of 6.25 µg/ml, it could reduce the DENV-2 infection in Vero cells by about 94% when cells infected with DENV-2 were exposed to 2EPS-B, whereas direct treatment of DENV-2 with 2EPS-B at the same concentration prior to subsequent infection to Vero cell yielded no inhibition. 2EPS-A, -B an -C showed strong DENV-2 NS2B-NS3 protease inhibition in an in vitro assay, with IC50 values of 1.94 ± 0.18, 1.47 ± 0.15 and 2.51 ± 0.21 µg/ml, respectively. Therefore, the spirotetronate compounds appear to prevent viral replication and viral assembly by inhibition of the viral protease.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Policétidos/farmacología , Actinobacteria/química , Animales , Chlorocebus aethiops , Virus del Dengue/enzimología , Virus del Dengue/fisiología , Concentración 50 Inhibidora , Policétidos/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Serogrupo , Células Vero , Replicación Viral/efectos de los fármacos
6.
Int J Syst Evol Microbiol ; 69(5): 1299-1305, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30789325

RESUMEN

A novel actinomycete, designated as strain H219T, was isolated from rhizosphere soil collected under an Elephant ear plant (Colocasiaesculenta) in Bangkok, Thailand. Strain H219T was characterised using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequences revealed that this isolate was most closely related to Saccharopolyspora tripterygii JCM 32123T (97.6 %), Saccharopolyspora dendranthemae NBRC 108675T (97.5 %) and Saccharopolyspora flava NBRC 16345T (97.5 %). However, DNA-DNA hybridization analyses showed a low relatedness in the range of 39-48 % between the novel isolate and the above closely related strains. The cell-wall peptidoglycan of strain H219T contained meso-diaminopimelic acid. The diagnostic whole-cell sugars consisted of arabinose and galactose. The cellular fatty acid profile mainly comprised iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0, and 10-methyl C17 : 0. The major menaquinone was MK-9(H4). The detected phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine-containing hydroxylated fatty acids and an unknown phospholipid. The DNA G+C content was 70.6 mol%. Strain H219T represented chemotaxonomic and morphological characteristics that were consistent with members of the genus Saccharopolyspora. However, strain H219T could be distinguished from closely related strains by several phenotypic properties. Based on the data from the polyphasic studies, we propose that strain H219T is a novel species within the genus Saccharopolyspora, Saccharopolysporarhizosphaerae sp. nov. The type strain is H219T (=TBRC 8564T=NBRC 113388T).


Asunto(s)
Colocasia/microbiología , Filogenia , Rizosfera , Saccharopolyspora/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Saccharopolyspora/aislamiento & purificación , Análisis de Secuencia de ADN , Tailandia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
Int J Syst Evol Microbiol ; 67(11): 4572-4577, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945543

RESUMEN

A non-Streptomyces actinomycete, designated as strain S265T, was isolated from rhizosphere collected under an elephant ear plant (Colocasia esculenta) in Bangkok, Thailand. The taxonomic position of this strain was determined by a polyphasic approach. Strain S265T formed single globose spores on long, branching, aerial hyphae. It produced abundant aerial mycelium with green colour. The cell wall contained meso-diaminopimelic acid, and diagnostic whole-cell sugars were arabinose and galactose. Phosphatidylethanolamine and diphosphatidylglycerol were detected predominantly as polar lipids, whereas mycolic acids were not found. The major menaquinone was MK-9(H4), and principal cellular fatty acids were C15 : 1 B, iso-C16 : 1 H, anteiso-C15 : 0 and C15 : 0 2-OH. The DNA G+C content was 69 mol%. According to phylogenetic analysis, strain S265T was clustered with Saccharomonospora glauca K62T (98.1 %) and Saccharomonosporaviridis DSM 43017T (97.1 %) despite its 16S rRNA gene sequence showing the highest similarity value to that of Saccharomonosporaazurea NA-128T (98.6 %). DNA-DNA relatedness values between strain S265T and the closely related strains were in the range of 7-50 %, thus strengthening the evidence derived from the polyphasic study that strain S265T represents a novel species within the genus Saccharomonospora, for which the name Saccharomonosporacolocasiae sp. nov. is proposed. The type strain is S265T (=TBRC 7235T=NBRC 112945T).


Asunto(s)
Actinomycetales/clasificación , Colocasia/microbiología , Filogenia , Rizosfera , Microbiología del Suelo , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tailandia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
J Gen Appl Microbiol ; 63(4): 207-211, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28502957

RESUMEN

A new pyrrole compound, 1-methoxypyrrole-2-carboxamide, was obtained from a culture broth of Streptomyces griseocarneus SWW368, which was isolated from the rhizospheric soil under a Para rubber tree (Hevea brasiliensis). The chemical structure was elucidated by 1D NMR, 2D NMR, and MS, as a pyrrole ring with a N-methoxy group and a primary amide group. It exhibited antibacterial properties against Kocuria rhizophila, Staphylococcus aureus and Xanthomonas campestris pv. oryzae; however, cytotoxicity of the compound at 714 µM against several mammalian tumor cell lines, i.e. A549, PANC1, HT29, HT1299 and HeLa S3, were not detected.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Pirroles/farmacología , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/toxicidad , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hevea , Humanos , Pruebas de Sensibilidad Microbiana , Micrococcaceae/efectos de los fármacos , Pirroles/química , Pirroles/aislamiento & purificación , Pirroles/toxicidad , Rizosfera , Staphylococcus aureus/efectos de los fármacos , Streptomyces/clasificación , Tailandia
9.
J Agric Food Chem ; 64(25): 5171-9, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27267862

RESUMEN

Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 µg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.


Asunto(s)
Actinobacteria/química , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Candida albicans/efectos de los fármacos , Colletotrichum/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Fermentación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polienos/química , Polienos/metabolismo , Polienos/farmacología , Tailandia
10.
J Asian Nat Prod Res ; 18(5): 462-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26765144

RESUMEN

Altholactone exhibited the anti-fungal activity with a high MIC value of 128 µg ml(-1) against Cryptococcus neoformans and Saccharomyces cerevisiae. Fifteen ester derivatives of altholactone 1-15 were modified by esterification and their structures were confirmed by spectroscopic methods. Most of the ester derivatives exhibited stronger anti-fungal activities than that of the precursor altholactone. 3-Bromo- and 2,4-dichlorobenzoates (7 and 15) exhibited the lowest minimal inhibitory concentration (MIC) values against C. neoformans at 16 µg ml(-1), while the 4-bromo-, 4-iodo-, and 1-bromo-3-chlorobenzoates (11-13) displayed potent activity against S. cerevisiae with MIC values of 1 µg ml(-1). In conclusion, this analysis indicates that the anti-fungal activity of altholactone is enhanced by addition of halogenated benzoyl group to the 3-OH group.


Asunto(s)
Antifúngicos/síntesis química , Antifúngicos/farmacología , Benzoatos/síntesis química , Benzoatos/farmacología , Furanos/síntesis química , Furanos/farmacología , Hidrocarburos Halogenados/síntesis química , Hidrocarburos Halogenados/farmacología , Pironas/síntesis química , Pironas/farmacología , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/química , Antifúngicos/química , Benzoatos/química , Cryptococcus neoformans/efectos de los fármacos , Diciclohexilcarbodiimida/química , Furanos/química , Hidrocarburos Halogenados/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Pironas/química , Saccharomyces cerevisiae/efectos de los fármacos , Estereoisomerismo
11.
Appl Microbiol Biotechnol ; 100(6): 2749-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26603758

RESUMEN

Streptomyces SBI034 produces several bafilomycin derivatives. Its afsA homologue (stcA) and putative γ-butyrolactone receptor gene (stcB) were cloned. Construction of a stcA disruptant (stcA gene knockout) resulted in complete abolishment of all bafilomycin production. Electron microscopic analysis showed a defect of aerial mycelium formation and sporulation in the stcA disruptant. Restoration of all phenotypic defects and bafilomycin production was observed in a stcA complemented strain. Addition of exogenous γ-butyrolactone (GBL) extracted from the culture broth of the wild-type strain could stimulate the aerial mycelium and spore formation of the stcA disruptant. These results suggest that stcA plays a role in GBL-mediated regulation of bafilomycin biosynthesis and morphological development in Streptomyces strain SBI034.


Asunto(s)
4-Butirolactona/metabolismo , Inhibidores Enzimáticos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Macrólidos/metabolismo , Streptomyces/enzimología , Streptomyces/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo
12.
World J Microbiol Biotechnol ; 31(2): 391-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25543910

RESUMEN

The rare actinomycetes strain 2EPS was isolated from soil and analysis of cultural, morphological characteristics, diaminopimelic acid content of its cell wall, and 16S rRNA gene sequence indicates that 2EPS belongs to genus Actinomadura. In addition, neighbor-joining phylogenetic tree also confirmed the relationships of this strain to other members of Actinomadura. A butanol extract with antibacterial activity was purified by reversed-phase chromatography to obtain three bioactive compounds, designated as compounds 1, 2 and 3. The structures of these compounds were determined using spectroscopic analysis ((1)H-NMR and (13)C-NMR) and mass spectrometric analysis (HR-TOF-MS). Compounds 1-3 were identified and found to be the same as those included in the Japanese patent number JP 09227587 for spirotetronate antibiotics and are BE-45722A (1), BE-45722B (2) and BE-45722C (3), respectively. All compounds were active against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, and B. subtilis ATCC 6633) with low MIC values between 0.08 and 5.0 µg/ml. Moreover, both 1 and 3 also exhibited strong activity, with similar MIC values, against Clostridium perfringens S107 at 0.63 µg/ml and C. difficile 630 at 0.08 µg/ml. These results suggest the identified spirotetronate compounds may have potential in the treatment of Clostridium infections. Overall, this analysis demonstrates that rare actinomycetes are a promising source for discovery of antimicrobial compounds.


Asunto(s)
Actinomycetales/química , Actinomycetales/aislamiento & purificación , Antibacterianos/farmacología , Butanoles/farmacología , Clostridium/efectos de los fármacos , Actinomycetales/clasificación , Antibacterianos/química , Butanoles/química , Cromatografía de Fase Inversa , Pruebas de Sensibilidad Microbiana , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
13.
Southeast Asian J Trop Med Public Health ; 41(5): 1177-87, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21073039

RESUMEN

One hundred seventy-seven actinomycetes strains were isolated from soils collected from fruit orchards in Thailand. All were tested for antibacterial activity against seven pathogenic bacteria using co-cultivation methods. Forty strains (22.6%) were active against at least one indicator bacteria. Twenty-seven strains (15.3%) inhibited only gram-positive bacteria, four strains (2.3%) inhibited only gram-negative bacteria, and nine strains (5.1%) showed activity against both. Strain SJE177 had potent activity against all tested bacteria, and was selected for further investigation. A crude ethyl acetate extract of this strain retained inhibitory activity as tested by disk-diffusion method. Analysis of morphological and biochemical characteristics and the 16S rRNA gene sequence indicated this strain belonged to the genus Streptomyces. The strain formed a monophyletic line in a phylogenetic tree of 16S rRNA gene sequences with other Streptomyces reference strains. High performance liquid chromatography (HPLC) analysis showed SJE177 produced actinomycin. Since many isolates showed inhibitory activity against indicator bacteria, these results suggest Thai soil could be an interesting source to explore for antibacterial substances.


Asunto(s)
Bacterias/efectos de los fármacos , Dactinomicina/biosíntesis , Microbiología del Suelo , Streptomyces/metabolismo , Cromatografía Líquida de Alta Presión , Técnicas de Cocultivo , Pruebas de Sensibilidad Microbiana , Filogenia , Solventes , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...