Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 351: 122851, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897345

RESUMEN

AIMS: Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS: PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS: PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE: PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.

2.
Methods Mol Biol ; 2807: 93-110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743223

RESUMEN

Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.


Asunto(s)
Infecciones por VIH , Humanos , Infecciones por VIH/virología , VIH-1/fisiología , Espectrometría de Masas/métodos , Microscopía Electrónica/métodos , Imagen Molecular/métodos , Reservorios de Enfermedades/virología
3.
iScience ; 27(3): 109236, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487019

RESUMEN

HIV-associated neurological compromise is observed in more than half of all people with HIV (PWH), even under antiretroviral therapy (ART). The mechanism has been associated with the early transmigration of HIV-infected monocytes across the BBB in a CCL2 and HIV replication-dependent manner. However, the mechanisms of chronic brain damage are unknown. We demonstrate that all PWH under ART have elevated circulating ATP levels that correlate with the onset of cognitive impairment even in the absence of a circulating virus. Serum ATP levels found in PWH with the most severe neurocognitive impairment trigger the transcellular migration of HIV-infected leukocytes across the BBB in a JAM-A and LFA-1-dependent manner. We propose that targeting transcellular leukocyte transmigration could reduce or prevent the devastating consequences of HIV within the brains of PWH under ART.

4.
FASEB J ; 38(5): e23514, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466151

RESUMEN

In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.


Asunto(s)
Estructuras de la Membrana Celular , Glioma , Nanotubos , Humanos , Comunicación Celular , Citoesqueleto de Actina
5.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38404916

RESUMEN

UNC45B is a multidomain molecular chaperone that is essential for the proper folding and function of myosin. It has previously been demonstrated that the UCS domain is responsible for the chaperoning function of UNC45B and that removing its client-binding loop leads to a significant change in its solution conformation and a reduced chaperoning function. Here, we report the direct quantification of affinities of myosin binding to wild type and mutant UNC45B using surface plasmon resonance (SPR) spectroscopy. We found that deletion of the client-binding loop in UNC45B resulted in a dramatic decrease in myosin affinity.

7.
Cell Rep ; 42(11): 113285, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37910505

RESUMEN

Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Adenosina/metabolismo , Linfocitos T CD4-Positivos , Activación Viral , Latencia del Virus/fisiología , Replicación Viral/fisiología
8.
Curr Opin Pharmacol ; 73: 102404, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734241

RESUMEN

Infectious agents such as human immune deficiency virus-1 (HIV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) use host proteins to infect, replicate, and induce inflammation within the host. A critical component of these diseases is the axis between pannexin-1 channels, extracellular ATP, and purinergic receptors. Here, we describe the potential therapeutic role of Pannexin-1/purinergic approaches to prevent or reduce the devastating consequences of these pathogens.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Conexinas , SARS-CoV-2 , Receptores Purinérgicos/metabolismo , Adenosina Trifosfato/metabolismo , Infecciones por VIH/tratamiento farmacológico
9.
NeuroImmune Pharm Ther ; 2(2): 169-186, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37476291

RESUMEN

Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.

10.
Sci Rep ; 13(1): 11481, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460564

RESUMEN

Tuberculosis (TB) has remained an unsolved problem and a major public health issue, particularly in developing countries. Pakistan is one of the countries with the highest tuberculosis infection rates globally. However, methods or biomarkers to detect early signs of TB infection are limited. Here, we characterized the mRNA profiles of immune responses in unstimulated Peripheral blood mononuclear cells obtained from treatment naïve patients with early signs of active pulmonary tuberculosis without previous history of clinical TB. We identified a unique mRNA profile in active TB compared to uninfected controls, including cytokines such as IL-27, IL-15, IL-2RA, IL-24, and TGFß, transcription factors such as STAT1 and NFATC1 and immune markers/receptors such as TLR4, IRF1, CD80, CD28, and PTGDR2 from an overall 84 different transcripts analyzed. Among 12 significant differentially expressed transcripts, we identified five gene signatures which included three upregulated IL-27, STAT1, TLR4 and two downregulated IL-24 and CD80 that best discriminate between active pulmonary TB and uninfected controls with AUC ranging from 0.9 to 1. Our data identified a molecular immune signature associated with the early stages of active pulmonary tuberculosis and it could be further investigated as a potential biomarker of pulmonary TB.


Asunto(s)
Interleucina-27 , Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Leucocitos Mononucleares , Receptor Toll-Like 4/genética , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/genética , Citocinas , Tuberculosis Latente/diagnóstico , Biomarcadores , ARN Mensajero/uso terapéutico
11.
PLoS Pathog ; 19(4): e1010941, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37115795

RESUMEN

The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis, with the highest rate of disease in patients with AIDS or immunosuppression. This microbe enters the human body via inhalation of infectious particles. C. neoformans capsular polysaccharide, in which the major component is glucuronoxylomannan (GXM), extensively accumulates in tissues and compromises host immune responses. C. neoformans travels from the lungs to the bloodstream and crosses to the brain via transcytosis, paracytosis, or inside of phagocytes using a "Trojan horse" mechanism. The fungus causes life-threatening meningoencephalitis with high mortality rates. Hence, we investigated the impact of intranasal exogenous GXM administration on C. neoformans infection in C57BL/6 mice. GXM enhances cryptococcal pulmonary infection and facilitates fungal systemic dissemination and brain invasion. Pre-challenge of GXM results in detection of the polysaccharide in lungs, serum, and surprisingly brain, the latter likely reached through the nasal cavity. GXM significantly alters endothelial cell tight junction protein expression in vivo, suggesting significant implications for the C. neoformans mechanisms of brain invasion. Using a microtiter transwell system, we showed that GXM disrupts the trans-endothelial electrical resistance, weakening human brain endothelial cell monolayers co-cultured with pericytes, supportive cells of blood vessels/capillaries found in the blood-brain barrier (BBB) to promote C. neoformans BBB penetration. Our findings should be considered in the development of therapeutics to combat the devastating complications of cryptococcosis that results in an estimated ~200,000 deaths worldwide each year.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Animales , Ratones , Humanos , Cryptococcus neoformans/metabolismo , Roedores , Ratones Endogámicos C57BL , Criptococosis/microbiología , Polisacáridos/metabolismo , Pulmón/metabolismo
12.
NeuroImmune Pharm Ther ; 2(1): 5-18, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027343

RESUMEN

Objectives: Zika virus (ZIKV) has become an epidemic in several countries and was declared a major public health issue by the WHO. Although ZIKV infection is asymptomatic or shows mild fever-related symptoms in most people, the virus can be transmitted from a pregnant mother to the fetus, resulting in severe brain developmental abnormalities, including microcephaly. Multiple groups have identified developmental neuronal and neuronal progenitor compromise during ZIKV infection within the fetal brain, but little is known about whether ZIKV could infect human astrocytes and its effect on the developing brain. Thus, our objective was to determine astrocyte ZiKV infection in a developmental-dependent manner. Methods: We analyze infection of pure cultures of astrocytes and mixed cultures of neurons and astrocytes in response to ZIKV using plaque assays, confocal, and electron microscopy to identify infectivity, ZIKV accumulation and intracellular distribution as well as apoptosis and interorganelle dysfunction. Results: Here, we demonstrated that ZIKV enters, infects, replicates, and accumulates in large quantities in human fetal astrocytes in a developmental-dependent manner. Astrocyte infection and intracellular viral accumulation resulted in neuronal apoptosis, and we propose astrocytes are a ZIKV reservoir during brain development. Conclusions: Our data identify astrocytes in different stages of development as major contributors to the devastating effects of ZIKV in the developing brain.

13.
Cell Mol Life Sci ; 80(4): 116, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016051

RESUMEN

HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.


Asunto(s)
Infecciones por VIH , Sustancia Blanca , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Sulfoglicoesfingolípidos , Daño Encefálico Crónico/complicaciones , Comunicación Celular
14.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954221

RESUMEN

The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Encéfalo , ADN , Humanos , ARN Mensajero , Proteínas Virales , Latencia del Virus
15.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682809

RESUMEN

The history of direct cell-cell communication has evolved in several small steps. First discovered in the 1930s in invertebrate nervous systems, it was thought at first to be an exception to the "cell theory", restricted to invertebrates. Surprisingly, however, in the 1950s, electrical cell-cell communication was also reported in vertebrates. Once more, it was thought to be an exception restricted to excitable cells. In contrast, in the mid-1960s, two startling publications proved that virtually all cells freely exchange small neutral and charged molecules. Soon after, cell-cell communication by gap junction channels was reported. While gap junctions are the major means of cell-cell communication, in the early 1980s, evidence surfaced that some cells might also communicate via membrane pores. Questions were raised about the possible artifactual nature of the pores. However, early in this century, we learned that communication via membrane pores exists and plays a major role in medicine, as the structures involved, "tunneling nanotubes", can rescue diseased cells by directly transferring healthy mitochondria into compromised cells and tissues. On the other hand, pathogens/cancer could also use these communication systems to amplify pathogenesis. Here, we describe the evolution of the discovery of these new communication systems and the potential therapeutic impact on several uncurable diseases.


Asunto(s)
Uniones Comunicantes , Nanotubos , Animales , Comunicación Celular/fisiología , Estructuras de la Membrana Celular , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Mitocondrias , Nanotubos/química
16.
Cell Mol Life Sci ; 79(7): 365, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708858

RESUMEN

SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2  alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.


Asunto(s)
COVID-19 , Trombosis , Plaquetas , Humanos , Pulmón , Megacariocitos , Proteínas de la Membrana , Proteínas de Unión al ARN , SARS-CoV-2
17.
Front Aging Neurosci ; 14: 811481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615594

RESUMEN

HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.

18.
iScience ; 24(12): 103478, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34841222

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1ß release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1ß levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.

19.
Front Immunol ; 12: 735922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671353

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. COVID-19 is considered an airway/multi-systemic disease, and demise has been associated with an uncontrolled immune response and a cytokine storm in response to the virus. However, the lung pathology, immune response, and tissue damage associated with COVID-19 demise are poorly described and understood due to safety concerns. Using post-mortem lung tissues from uninfected and COVID-19 deadly cases as well as an unbiased combined analysis of histology, multi-viral and host markers staining, correlative microscopy, confocal, and image analysis, we identified three distinct phenotypes of COVID-19-induced lung damage. First, a COVID-19-induced hemorrhage characterized by minimal immune infiltration and large thrombus; Second, a COVID-19-induced immune infiltration with excessive immune cell infiltration but no hemorrhagic events. The third phenotype correspond to the combination of the two previous ones. We observed the loss of alveolar wall integrity, detachment of lung tissue pieces, fibroblast proliferation, and extensive fibrosis in all three phenotypes. Although lung tissues studied were from lethal COVID-19, a strong immune response was observed in all cases analyzed with significant B cell and poor T cell infiltrations, suggesting an exhausted or compromised immune cellular response in these patients. Overall, our data show that SARS-CoV-2-induced lung damage is highly heterogeneous. These individual differences need to be considered to understand the acute and long-term COVID-19 consequences.


Asunto(s)
COVID-19/mortalidad , COVID-19/patología , Lesión Pulmonar/patología , Alveolos Pulmonares/patología , Fibrosis Pulmonar/patología , Anciano , Anciano de 80 o más Años , Autopsia , Linfocitos T CD8-positivos/inmunología , Síndrome de Liberación de Citoquinas/mortalidad , Síndrome de Liberación de Citoquinas/patología , Células Epiteliales/patología , Femenino , Hemorragia/patología , Humanos , Inflamación/patología , Pulmón/patología , Lesión Pulmonar/virología , Linfopenia/patología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/patología , Neutrófilos/inmunología , SARS-CoV-2 , Trombosis/patología
20.
Purinergic Signal ; 17(4): 563-576, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34542793

RESUMEN

Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.


Asunto(s)
Conexinas/metabolismo , Infecciones por VIH/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...