Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0296989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625901

RESUMEN

Natural anmindenol A isolated from the marine-derived bacteria Streptomyces sp. caused potent inhibition of inducible nitric oxide synthase without any significant cytotoxicity. This compound consists of a structurally unique 3,10-dialkylbenzofulvene skeleton. We previously synthesized and screened the novel derivatives of anmindenol A and identified AM-18002, an anmindenol A derivative, as a promising anticancer agent. The combination of AM-18002 and ionizing radiation (IR) improved anticancer effects, which were exerted by promoting apoptosis and inhibiting the proliferation of FM3A mouse breast cancer cells. AM-18002 increased the production of reactive oxygen species (ROS) and was more effective in inducing DNA damage. AM-18002 treatment was found to inhibit the expansion of myeloid-derived suppressor cells (MDSC), cancer cell migration and invasion, and STAT3 phosphorylation. The AM-18002 and IR combination synergistically induced cancer cell death, and AM-18002 acted as a potent anticancer agent by increasing ROS generation and blocking MDSC-mediated STAT3 activation in breast cancer cells.


Asunto(s)
Antineoplásicos , Indenos , Neoplasias , Sesquiterpenos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Antineoplásicos/farmacología , Apoptosis , Tolerancia a Radiación , Proliferación Celular , Línea Celular Tumoral
2.
Mol Carcinog ; 63(4): 714-727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38251858

RESUMEN

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/genética , FN-kappa B/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Proteínas de Neoplasias/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/fisiología , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo
3.
Oncol Lett ; 26(6): 521, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927420

RESUMEN

The complement system is a powerful innate immune system deployed in the immediate response to pathogens and cancer cells. Complement factor H (CFH), one of the regulators involved in the complement cascade, can interrupt the death of target cells. Certain types of cancer, such as breast cancer, can adopt an aggressive phenotype, such as breast cancer stem cells (BCSCs), through enhancement of the defense system against complement attack by amplifying various complement regulators. However, little is known about the association between CFH and BCSCs. In the present study, the roles of CFH in the CSC characteristics and radioresistance of MDA-MB-231 human breast cancer cells were investigated. CFH knockdown in MDA-MB-231 cells decreased the viability of the cells upon complement cascade activation. Notably, CFH knockdown also decreased cell survival and suppressed mammosphere formation, cell migration and cell invasion by attenuating radioresistance. Additionally, CFH knockdown further enhanced irradiation-induced apoptosis through G2/M cell cycle arrest. It was also discovered that CFH knockdown attenuated the aggressive phenotypes of cancer cells by regulating CSC-associated gene expression. Finally, by microarray analysis, it was found that the expression of erythrocyte membrane protein band 4.1-like 3 (EPB41L3) was markedly increased following CFH knockdown. EPB41L3 inhibited ERK and activated the p38 MAPK signaling pathway. Taken together, these results indicated that CFH knockdown attenuated CSC properties and radioresistance in human breast cancer cells via controlling MAPK signaling and through upregulation of the tumor suppressor, EPB41L3.

4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054776

RESUMEN

Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce. Therefore, we aimed to verify the role of G9a and its presumable downstream regulators during malignant progression of breast cancer. G9a-depleted MCF7 and T47D breast cancer cells exhibited suppressed motility, including migration and invasion, and an improved response to ionizing radiation. To identify the possible key factors underlying these effects, microarray analysis was performed, and a TGF-ß superfamily member, BMP5, was selected as a prominent target gene. It was found that BMP5 expression was markedly increased by G9a knockdown. Moreover, reduction in the migration/invasion ability of MCF7 and T47D breast cancer cells was induced by BMP5. Interestingly, a G9a-depletion-mediated increase in BMP5 expression induced the phosphorylation of Smad proteins, which are the intracellular signaling mediators of BMP5. Accordingly, we concluded that the observed antitumor effects may be based on the G9a-depletion-mediated increase in BMP5 expression and the consequent facilitation of Smad protein phosphorylation.


Asunto(s)
Proteína Morfogenética Ósea 5/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Invasividad Neoplásica
5.
PLoS One ; 15(10): e0240533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33091036

RESUMEN

Ginsenoside Rg3 (Rg3) has been studied in several cancer models and is suggested to act through various pharmacological effects. We investigated the anticancer properties of Rg3 through myeloid-derived suppressor cell (MDSC) modulation in FM3A mouse mammary carcinoma cells. The effects of Rg3 on MDSCs and consequent changes in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) were evaluated by diverse methods. MDSCs promoted cancer by enhancing breast cancer stemness and promoting EMT. Rg3 at a dose without obvious cytotoxicity downregulated MDSCs and repressed MDSC-induced cancer stemness and EMT. Mechanistic investigations suggested that these inhibitory effects of Rg3 on MDSCs and corresponding cancer progression depend upon suppression of the STAT3-dependent pathway, tumor-derived cytokines, and the NOTCH signaling pathway. In a mouse model, MDSCs accelerated tumor progression, and Rg3 delayed tumor growth, which is consistent with the results of in vitro experiments. These results indicated that Rg3 could effectively inhibit the progression of breast cancer. The anticancer effect of Rg3 might be partially due to its downregulation of MDSCs and consequent repression of cancer stemness and EMT in breast cancer. Hence, we suggest the regulation of MDSCs through Rg3 treatment as an effective therapeutic strategy for breast cancer patients.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ginsenósidos/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C3H , Células Supresoras de Origen Mieloide/patología
6.
Sci Rep ; 7(1): 2798, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28584306

RESUMEN

UHRF1 (ubiquitin-like, with PHD and RING finger domains 1) plays a crucial role in DNA methylation, chromatin remodeling and gene expression and is aberrantly upregulated in various types of human cancers. However, the precise role of UHRF1 in cancer remains controversial. In this study, we observed that hypoxia-induced downregulation of UHRF1 contributes to the induction of the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma cells. By negatively modulating UHRF1 expression, we further showed that UHRF1 deficiency in itself is sufficient to increase the migratory and invasive properties of cells via inducing EMT, increasing the tumorigenic capacity of cells and leading to the expansion of cancer stem-like cells. Epigenetic changes caused by UHRF1 deficiency triggered the upregulation of CXCR4, thereby activating AKT and JNK to increase the expression and secretion of IL-6. In addition, IL-6 readily activated the JAK/STAT3/Snail signaling axis, which subsequently contributed to UHRF1 deficiency-induced EMT. Our results collectively demonstrate that UHRF1 deficiency may play a pivotal role in the malignant alteration of cancer cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Proteínas Potenciadoras de Unión a CCAAT/deficiencia , Carcinoma Hepatocelular/patología , Epigénesis Genética , Transición Epitelial-Mesenquimal , Humanos , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Ubiquitina-Proteína Ligasas
7.
Anticancer Drugs ; 22(8): 763-73, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21642840

RESUMEN

A combined treatment with conventional chemotherapies can enhance the effectiveness of chemotherapeutic agents against cancers. Here, we have shown that the naturally occurring triterpenoids synergistically enhance the response of cervical cancer cells to taxol. Of the triterpenoid compounds, pristimerin enhanced the anticancer effect of taxol with the highest efficiency by combination. Pristimerin synergizes with taxol to inhibit clonogenic survival and tumor growth in nude mice, and to enhance cell death in cervical cancer cells. A combined treatment with taxol and pristimerin induced cervical cancer cell death by increasing intracellular reactive oxygen species levels, upregulation of death receptor death receptor 5 (DR5), activation of Bax, and dissipation of mitochondrial membrane potential. Treatment with N-acetyl-L-cysteine, a thiol-containing antioxidant completely blocked combined treatment-induced Bax translocation as well as DR5 upregulation. Moreover, inhibition of Jun N-terminal kinase/c-Jun pathway attenuated cell death by blocking DR5 upregulation and Bax activation. These results indicate that the triterpenoid, pristimerin, synergistically enhances taxol response of cervical cancer cells through DR5 expression and Bax activation. Furthermore, the reactive oxygen species-dependent activation of the Jun N-terminal kinase/c-Jun pathway is required for the DR5 upregulation and Bax activation. The molecular mechanism revealed by this study may aid in the design of future combination cancer therapies against cells with intrinsically reduced sensitivity to taxol.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Paclitaxel/administración & dosificación , Triterpenos Pentacíclicos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Triterpenos/administración & dosificación , Regulación hacia Arriba/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/metabolismo
8.
Mol Pharmacol ; 76(4): 734-44, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19574249

RESUMEN

Naturally occurring triterpenoid compounds have long been used as anti-inflammatory, antimalarial, and insecticidal agents. It has become evident that some of the natural or synthetic triterpenoids have promising clinical potential as both a therapeutic and chemopreventive agent for cancer. However, the molecular basis for the antitumor activity of triterpenoid has yet to be defined. In this study, we show that pristimerin, a natural triterpenoid, induces mitochondrial cell death in human cervical cancer cells and that reactive oxygen species (ROS)-dependent activation of both Bax and poly(ADP-ribose) polymerase-1 (PARP-1) is critically required for the mitochondrial dysfunction. We also showed that c-Jun N-terminal kinase (JNK) is involved in ROS-dependent Bax activation. Treatment of pristimerin induced an increase in intracellular ROS, JNK activation, conformational change, and mitochondrial redistribution of Bax, mitochondrial membrane potential loss, and cell death. The PARP-1 was also found to be activated by pristimerin treatment. An antioxidant, N-acetyl-l-cysteine (NAC), inhibited pristimerin-induced JNK activation, Bax relocalization, and PARP-1 activation, as well as mitochondrial cell death. Moreover, inhibition of JNK clearly suppressed conformational change and mitochondrial translocation of Bax and subsequent mitochondrial cell death but did not affect PARP-1 activation. Inhibition of PARP-1 with 1,5-dihydroxyisoquinoline (DIQ) or with small interfering RNA of PARP-1 significantly attenuated pristimerin-induced mitochondrial membrane potential loss and cell death but did not affect JNK activation and Bax relocalization. These results indicate that the natural triterpenoid pristimerin induces mitochondrial cell death through ROS-dependent activation of both Bax and PARP-1 in human cervical cancer cells and that JNK is involved in ROS-dependent Bax activation.


Asunto(s)
Mitocondrias/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/farmacología , Neoplasias del Cuello Uterino/patología , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Tumoral , Activación Enzimática , Femenino , Humanos , Triterpenos Pentacíclicos , Poli(ADP-Ribosa) Polimerasa-1 , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA