Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38470795

RESUMEN

The initial electrical characteristics and bias stabilities of thin-film transistors (TFTs) are vital factors regarding the practical use of electronic devices. In this study, the dependence of positive bias stress (PBS) instability on an initial threshold voltage (VTH) and its origin were analyzed by understanding the roles of slow and fast traps in solution-processed oxide TFTs. To control the initial VTH of oxide TFTs, the indium oxide (InOx) semiconductor was doped with aluminum (Al), which functioned as a carrier suppressor. The concentration of oxygen vacancies decreased as the Al doping concentration increased, causing a positive VTH shift in the InOx TFTs. The VTH shift (∆VTH) caused by PBS increased exponentially when VTH was increased, and a distinct tendency was observed as the gate bias stress increased due to a high vertical electric field in the oxide dielectric. In addition, the recovery behavior was analyzed to reveal the influence of fast and slow traps on ∆VTH by PBS. Results revealed that the effect of the slow trap increased as the VTH moved in the positive direction; this occured because the main electron trap location moved away from the interface as the Fermi level approached the conduction band minimum. Understanding the correlation between VTH and PBS instability can contribute to optimizing the fabrication of oxide TFT-based circuits for electronic applications.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37764597

RESUMEN

High-performance oxide transistors have recently attracted significant attention for use in various electronic applications, such as displays, sensors, and back-end-of-line transistors. In this study, we demonstrate atomically thin indium-oxide (InOx) semiconductors using a solution process for high-performance thin-film transistors (TFTs). To achieve superior field-effect mobility and switching characteristics in TFTs, the bandgap and thickness of the InOx were tuned by controlling the InOx solution molarity. As a result, a high field-effect mobility and on/off-current ratio of 13.95 cm2 V-1 s-1 and 1.42 × 1010, respectively, were achieved using 3.12-nanometer-thick InOx. Our results showed that the charge transport of optimized InOx with a thickness of 3.12 nm is dominated by percolation conduction due to its low surface roughness and appropriate carrier concentration. Furthermore, the atomically thin InOx TFTs showed superior positive and negative gate bias stress stabilities, which are important in electronic applications. The proposed oxide TFTs could provide an effective means of the fabrication of scalable, high-throughput, and high-performance transistors for next-generation electronic applications.

3.
Nanomaterials (Basel) ; 13(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570549

RESUMEN

The interest in low processing temperature for printable transistors is rapidly increasing with the introduction of a new form factor in electronics and the growing importance of high throughput. This paper reports the fabrication of low-temperature-processable enhancement-mode amorphous oxide thin-film transistors (TFTs) using the solution process. A facile low-pressure annealing (LPA) method is proposed for the activation of indium oxide (InOx) semiconductors at a significantly low processing temperature of 200 °C. Thermal annealing at a pressure of about ~10 Torr induces effective condensation in InOx even at a low temperature. As a result, the fabricated LPA InOx TFTs not only functioned in enhancement mode but also exhibited outstanding switching characteristics with a high on/off current ratio of 4.91 × 109. Furthermore, the LPA InOx TFTs exhibit stable operation under bias stress compared to the control device due to the low concentration of hydroxyl defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...