Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Diabetes ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39446565

RESUMEN

Type 1 diabetes treatment stands at a crucial and exciting crossroad since the 2022 U.S. Food and Drug Administration (FDA) approval of teplizumab to delay disease development. In this Perspective article, we discuss four major conceptual and practical issues that emerged as key to further advance type 1 diabetes research and therapies. First, collaborative networks leveraging the synergy between the type 1 diabetes research and care community members are key to fostering innovation, know-how and translation into the clinical arena worldwide. Second, recent clinical trials in presymptomatic stage 2 and recent-onset stage 3 disease have shown the promise, and potential pitfalls, of using immunomodulatory and/or beta-cell protective agents to achieve sustained remission or prevention. Third, the increasingly appreciated heterogeneity of clinical, immunological, and metabolic phenotypes and disease trajectories is of critical importance to advance the decision-making process for tailored type 1 diabetes care and therapy. Fourth, the clinical benefits of early diagnosis of beta-cell autoimmunity warrant consideration of general population screening for islet autoantibodies, which requires further efforts to address the technical, organizational and ethical challenges inherent to a sustainable program. Efforts are underway to integrate these four concepts into the future directions of type 1 diabetes research and therapy.

2.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345410

RESUMEN

Aims/hypothesis: Surviving beta cells in type 1 diabetes respond to inflammation by upregulating programmed death-ligand 1 (PD-L1) to engage immune cell programmed death-1 (PD-1) and limit destruction by self-reactive immune cells. Extracellular vesicles (EVs) and their cargo can serve as biomarkers of beta cell health and contribute to islet intercellular communication. We hypothesized that the inflammatory milieu of type 1 diabetes increases PD-L1 in beta cell EV cargo and that EV PD-L1 may protect beta cells against immune-mediated cell death. Methods: Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry, and ELISA. EV PD-L1: PD-1 binding was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8 T cells. Plasma EV and soluble PD-L1 were assayed in plasma of individuals with islet autoantibody positivity (Ab+) or recent-onset type 1 diabetes and compared to non-diabetic controls. Results: PD-L1 protein colocalized with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. 24-h IFN-α or IFN-γ treatment induced a two-fold increase in EV PD-L1 cargo without a corresponding increase in number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8 T cells. Plasma EV PD-L1 levels were increased in islet Ab+ individuals, particularly in those with single Ab+, Additionally, in from individuals with either Ab+ or type 1 diabetes, but not in controls, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV-PD-L1 could be protective for residual beta cell function. Conclusions/interpretation: IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8 T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in islet autoantibody positive patients compared to controls. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.

3.
J Biol Chem ; 300(11): 107827, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39342996

RESUMEN

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with proinflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with proinflammatory cytokines (interleukin-1ß, interferonγ, and tumor necrosis factor α) to model type 1 diabetes in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA-seq data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers were observed in islets derived from nonobese diabetic mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39252615

RESUMEN

CONTEXT: Alterations in RNA splicing may influence protein isoform diversity that contributes to or reflects the pathophysiology of certain diseases. Whereas specific RNA splicing events in pancreatic islets have been investigated in models of inflammation in vitro, how RNA splicing in the circulation correlates with or is reflective of T1D disease pathophysiology in humans remains unexplored. OBJECTIVE: To use machine learning to investigate if alternative RNA splicing events differ between individuals with and without new-onset type 1 diabetes (T1D) and to determine if these splicing events provide insight into T1D pathophysiology. METHODS: RNA deep sequencing was performed on whole blood samples from two independent cohorts: a training cohort consisting of 12 individuals with new-onset T1D and 12 age- and sex-matched nondiabetic controls and a validation cohort of the same size and demographics. Machine learning analysis was used to identify specific isoforms that could distinguish individuals with T1D from controls. RESULTS: Distinct patterns of RNA splicing differentiated participants with T1D from unaffected controls. Notably, certain splicing events, particularly involving retained introns, showed significant association with T1D. Machine learning analysis using these splicing events as features from the training cohort demonstrated high accuracy in distinguishing between T1D subjects and controls in the validation cohort. Gene Ontology pathway enrichment analysis of the retained intron category showed evidence for a systemic viral response in T1D subjects. CONCLUSIONS: Alternative RNA splicing events in whole blood are significantly enriched in individuals with new-onset T1D and can effectively distinguish these individuals from unaffected controls. Our findings also suggest that RNA splicing profiles offer the potential to provide insights into disease pathogenesis.

5.
Diabetes ; 73(11): 1769-1779, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106185

RESUMEN

Type 1 diabetes (T1D) results from ß-cell destruction due to autoimmunity. It has been proposed that ß-cell loss is relatively quiescent in the early years after seroconversion to islet antibody positivity (stage 1), with accelerated ß-cell loss only developing around 6-18 months prior to clinical diagnosis. This construct implies that immunointervention in this early stage will be of little benefit, since there is little disease activity to modulate. Here, we argue that the apparent lack of progression in early-stage disease may be an artifact of the modality of assessment used. When substantial ß-cell function remains, the standard assessment, the oral glucose tolerance test, represents a submaximal stimulus and underestimates the residual function. In contrast, around the time of diagnosis, glucotoxicity exerts a deleterious effect on insulin secretion, giving the impression of disease acceleration. Once glucotoxicity is relieved by insulin therapy, ß-cell function partially recovers (the honeymoon effect). However, evidence from recent trials suggests that glucose control has little effect on the underlying disease process. We therefore hypothesize that the autoimmune destruction of ß-cells actually progresses at a more or less constant rate through all phases of T1D and that early-stage immunointervention will be both beneficial and desirable.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/inmunología , Humanos , Autoinmunidad , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Progresión de la Enfermedad , Animales
6.
FASEB J ; 38(15): e23853, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120544

RESUMEN

Sodium butyrate (NaB) improves ß-cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been fully elucidated. In this study, we investigated the impact of NaB on ß-cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 ß cells. Consistently, NaB improved glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the ß cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1ß-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent ß-cell death in response to IL-1ß treatment. Mechanistic experiments revealed that NaB mediated these beneficial effects in the ß-cell through histone deacetylase (HDAC) inhibition, iNOS suppression, and modulation of AKT-GSK-3 signaling. Taken together, these data support a model whereby NaB treatment promotes ß-cell function and Ca2+ homeostasis under proinflammatory conditions through pleiotropic effects that are linked with maintenance of SOCE. These results also suggest a relationship between ß-cell SOCE and gut microbiome-derived butyrate that may be relevant in the treatment and prevention of diabetes.


Asunto(s)
Ácido Butírico , Calcio , Células Secretoras de Insulina , Molécula de Interacción Estromal 1 , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Molécula de Interacción Estromal 1/metabolismo , Ratones , Humanos , Ácido Butírico/farmacología , Calcio/metabolismo , Citocinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Retículo Endoplásmico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-39134385

RESUMEN

The Network for Pancreatic Organ Donors with Diabetes (nPOD) has helped shape the contemporary understanding of type 1 diabetes (T1D) pathogenesis in humans through the procurement, distribution to scientists, and collaborative study of human pancreata and disease-related tissues from organ donors with T1D and islet autoantibody positivity. Since its inception in 2007, nPOD has collected tissues from 600 donors, and these resources have been distributed across 22 countries to more than 290 projects, resulting in nearly 350 publications. Research projects supported by nPOD span the breadth of diabetes research, including studies on T1D immunology and ß-cell biology, and have uniquely unveiled abnormalities in other pancreatic cell types. In this article, we will detail the history and programmatic features of nPOD, as well as highlight key scientific findings from nPOD studies. We will present our view for the future of nPOD and discuss how the success of the program has established a precedent whereby knowledge gaps in biomedical research can be addressed through the study of human tissues.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39078977

RESUMEN

CONTEXT: Obesity is prevalent in type 1 diabetes (T1D) and is problematic with higher risk for diabetes complications. It is unknown to what extent gut microbiome changes are associated with obesity and T1D. OBJECTIVE: To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences in lean T1D youth (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS: We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) differences in lean (n=27) and obese (n=21) T1D youth in a pilot study. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. RESULTS: Bacterial community composition showed between sample diversity differences (ß-diversity) by BMI group (p=0.013). There was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). There was a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri, among other taxa in the obese group. Functional profiling showed an upregulation of branched chain amino acid (BCAA) biosynthesis in the obese group and upregulation of BCAA degradation, tyrosine metabolism and secondary bile acid biosynthesis in the lean group. Stool SCFAs were higher in the obese versus the lean group (p<0.05 for all). CONCLUSIONS: Our findings identify a gut microbiome and microbial metabolite signature associated with obesity in T1D. These findings could help identify gut microbiome targeted therapies to manage obesity in T1D.

9.
Cell ; 187(15): 3789-3820, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059357

RESUMEN

Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Animales , Resistencia a la Insulina , Epidemias , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/metabolismo
10.
Cell Rep Med ; 5(6): 101591, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838677

RESUMEN

Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.


Asunto(s)
Cromosomas Humanos Par 14 , MicroARN Circulante , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/sangre , MicroARN Circulante/sangre , MicroARN Circulante/genética , Masculino , Femenino , Cromosomas Humanos Par 14/genética , Adulto , Adolescente , Sitios Genéticos , Adulto Joven , MicroARNs/genética , MicroARNs/sangre , Biomarcadores/sangre , Niño , Predisposición Genética a la Enfermedad
11.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766166

RESUMEN

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human ß cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced ß cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of ß cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented ß cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for ß cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.

12.
medRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38798462

RESUMEN

Acetylated and butyrylated high amylose starch (HAMS-AB) is a prebiotic shown to be effective in type 1 diabetes (T1D) prevention in mouse models and is safe in adults with established T1D. HAMS-AB alters the gut microbiome profile with increased bacterial fermenters that produce short chain fatty acids (SCFAs) with anti-inflammatory and immune-modulatory effects. We performed a pilot study using a cross-over design to assess the safety and efficacy of 4 weeks of oral HAMS-AB consumption by recently diagnosed (< 2 years of diagnosis) youths with T1D. Seven individuals completed the study. The mean±SD age was 15.0±1.2 years, diabetes duration 19.5±6.3 months, 5/7 were female and 4/7 were White, all with a BMI of < 85th%. The prebiotic was safe. Following prebiotic intake, gut microbiome changes were seen, including a notable increase in the relative abundance of fermenters such as Bifidobacterium and Faecalibacterium. Treatment was also associated with changes in bacterial functional pathways associated with either improved energy metabolism (upregulation of tyrosine metabolism) or anti-inflammatory effects (reduced geraniol degradation). There were no differences in stool SCFA levels. Plasma metabolites associated with improved glycemia, such as hippurate, were significantly increased after treatment and there were positive and significant changes in the immune regulatory function of mucosal associated invariant T cells. There was a significant decrease in the area under the curve glucose but not C-peptide, as measured during a mixed meal tolerance testing, following the prebiotic consumption. In summary, the prebiotic HAMS-AB was safe in adolescents with T1D and showed promising effects on the gut microbiome composition, function and immune regulatory function.

14.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38562689

RESUMEN

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model type 1 diabetes (T1D) in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

15.
Commun Med (Lond) ; 4(1): 66, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582818

RESUMEN

BACKGROUND: Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS: We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS: Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS: Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.


Islet autoantibodies are markers found in the blood when insulin-producing cells in the pancreas become damaged and can be used to predict future development of type 1 diabetes. We evaluated published literature to determine whether characteristics of islet antibodies (type, levels, numbers) could improve prediction and help understand differences in how individuals with type 1 diabetes respond to treatments. We found existing evidence shows that islet autoantibody type and number are most useful to predict disease progression before diagnosis. In addition, the age when islet autoantibodies first appear strongly influences rate of progression. These findings provide important information for patients and care providers on how islet autoantibodies can be used to understand future type 1 diabetes development and to identify individuals who have the potential to benefit from intervention or prevention therapy.

16.
Diabetes ; 73(4): 545-553, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507587

RESUMEN

The synthesis, processing, and secretion of insulin by the pancreatic ß-cell is key for the maintenance of systemic metabolic homeostasis, and loss or dysfunction of ß-cells underlies the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Work in the Evans-Molina laboratory over the past 15 years has pioneered the idea that regulation of calcium dynamics is critical to ß-cell biology and diabetes pathophysiology. In this article, I will share three vignettes from the laboratory that demonstrate our bench-to-bedside approach to determining mechanisms of ß-cell stress that could improve therapeutic options and outcomes for individuals living with diabetes. The first of these vignettes will illustrate a role for the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump in the regulation of endoplasmic reticulum (ER) calcium, protein trafficking, and proinsulin processing within the ß-cell. The second vignette will highlight how alterations in ß-cell calcium signaling intersect with T1D pathogenesis. The final vignette will demonstrate how activation of ß-cell stress pathways may serve as an anchor to inform biomarker strategies in T1D. Lastly, I will share my vision for the future of diabetes care, where multiple biomarkers of ß-cell stress may be combined with additional immune and metabolic biomarkers to better predict disease risk and improve therapies to prevent or delay T1D development.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Biomarcadores/metabolismo
17.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383396

RESUMEN

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Asunto(s)
Ácidos Grasos Omega-3 , Islotes Pancreáticos , N-Glicosil Hidrolasas , Ratones , Animales , Humanos , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Fosfatidilcolinas/metabolismo
18.
Vision Res ; 214: 108339, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039846

RESUMEN

Retinal function changes dramatically from day to night, yet clinical diagnosis, treatments, and experimental sampling occur during the day. To begin to address this gap in our understanding of disease pathobiology, this study investigates whether diabetes affects the retina's daily rhythm of gene expression. Diabetic, Ins2Akita/J mice, and non-diabetic littermates were kept under a 12 h:12 h light/dark cycle until 4 months of age. mRNA sequencing was conducted in retinas collected every 4 h throughout the 24 hr light/dark cycle. Computational approaches were used to detect rhythmicity, predict acrophase, identify differential rhythmic patterns, analyze phase set enrichment, and predict upstream regulators. The retinal transcriptome exhibited a tightly regulated rhythmic expression with a clear 12-hr transcriptional axis. Day-peaking genes were enriched for DNA repair, RNA splicing, and ribosomal protein synthesis, night-peaking genes for metabolic processes and growth factor signaling. Although the 12-hr transcriptional axis is retained in the diabetic retina, it is phase advanced for some genes. Upstream regulator analysis for the phase-shifted genes identified oxygen-sensing mechanisms and HIF1alpha, but not the circadian clock, which remained in phase with the light/dark cycle. We propose a model in which, early in diabetes, the retina is subjected to an internal desynchrony with the circadian clock and its outputs are still light-entrained whereas metabolic pathways related to neuronal dysfunction and hypoxia are phase advanced. Further studies are now required to evaluate the chronic implications of such desynchronization on the development of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ratones , Animales , Ritmo Circadiano/genética , Transcriptoma , Retina/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Fotoperiodo
19.
medRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076918

RESUMEN

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in ß cells and to understand why this protection fails to occur naturally. Methods: GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results: The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces ß cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation: GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic ß cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.

20.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076970

RESUMEN

Obesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. OBJECTIVE: To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS: We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. RESULTS: Bacterial community composition showed differences in species type (ß-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri , among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). CONCLUSIONS: Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...