Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38770683

RESUMEN

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Asunto(s)
Carcinogénesis , Membrana Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Endocitosis , Transporte de Proteínas , Aparato de Golgi/metabolismo
2.
Cell Death Dis ; 15(1): 40, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216558

RESUMEN

The activation of apoptosis signalling by TRAIL (TNF-related apoptosis-inducing ligand) through receptor binding is a fundamental mechanism of cell death induction and is often perturbed in cancer cells to enhance their cell survival and treatment resistance. Ubiquitination plays an important role in the regulation of TRAIL-mediated apoptosis, and here we investigate the role of the E3 ubiquitin ligase Itch in TRAIL-mediated apoptosis in oesophageal cancer cells. Knockdown of Itch expression results in resistance to TRAIL-induced apoptosis, caspase-8 activation, Bid cleavage and also promotes cisplatin resistance. Whilst the assembly of the death-inducing signalling complex (DISC) at the plasma membrane is not perturbed relative to the control, TRAIL-R2 is mis-localised in the Itch-knockdown cells. Further, we observe significant changes to mitochondrial morphology alongside an increased cholesterol content. Mitochondrial cholesterol is recognised as an important anti-apoptotic agent in cancer. Cells treated with a drug that increases mitochondrial cholesterol levels, U18666A, shows a protection from TRAIL-induced apoptosis, reduced caspase-8 activation, Bid cleavage and cisplatin resistance. We demonstrate that Itch knockdown cells are less sensitive to a Bcl-2 inhibitor, show impaired activation of Bax, cytochrome c release and an enhanced stability of the cholesterol transfer protein STARD1. We identify a novel protein complex composed of Itch, the mitochondrial protein VDAC2 and STARD1. We propose a mechanism where Itch regulates the stability of STARD1. An increase in STARD1 expression enhances cholesterol import to mitochondria, which inhibits Bax activation and cytochrome c release. Many cancer types display high mitochondrial cholesterol levels, and oesophageal adenocarcinoma tumours show a correlation between chemotherapy resistance and STARD1 expression which is supported by our findings. This establishes an important role for Itch in regulation of extrinsic and intrinsic apoptosis, mitochondrial cholesterol levels and provides insight to mechanisms that contribute to TRAIL, Bcl-2 inhibitor and cisplatin resistance in cancer cells.


Asunto(s)
Apoptosis , Ubiquitina-Proteína Ligasas , Antineoplásicos/farmacología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Colesterol/metabolismo , Cisplatino/farmacología , Cisplatino/metabolismo , Citocromos c/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Muerte Celular/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos
3.
Front Oncol ; 13: 1217741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529692

RESUMEN

Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival; processes often deregulated in cancer. Prostate cancer is the second leading cause of cancer-related death in men in the developed world. While early-stage disease is curable by surgery or radiotherapy there is an unmet need to identify prognostic biomarkers, markers to treatment response and new therapeutic targets in intermediate-late stage disease. This study explored the morphology of organelles and membrane contact sites in tumor tissue from normal, low and intermediate histological grade groups. The morphology of organelles in secretory prostate epithelial cells; including Golgi apparatus, ER, lysosomes; was similar in prostate tissue samples across a range of Gleason scores. Mitochondrial morphology was not dramatically altered, but the number of membrane contacts with the ER notably increased with disease progression. A three-fold increase of tight mitochondria-ER membrane contact sites was observed in the intermediate Gleason score group compared to normal tissue. To investigate whether these changes were concurrent with an increased androgen signaling in the tissue, we investigated whether an anti-androgen used in the clinic to treat advanced prostate cancer (enzalutamide) could reverse the phenotype. Patient-derived explant tissues with an intermediate Gleason score were cultured ex vivo in the presence or absence of enzalutamide and the number of ER-mitochondria contacts were quantified for each matched pair of tissues. Enzalutamide treated tissue showed a significant reduction in the number and length of mitochondria-ER contact sites, suggesting a novel androgen-dependent regulation of these membrane contact sites. This study provides evidence for the first time that prostate epithelial cells undergo adaptations in membrane contact sites between mitochondria and the ER during prostate cancer progression. These adaptations are androgen-dependent and provide evidence for a novel hormone-regulated mechanism that support establishment and extension of MAMs. Future studies will determine whether these changes are required to maintain pro-proliferative signaling and metabolic changes that support prostate cancer cell viability.

4.
Biochem Soc Trans ; 51(1): 331-342, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36815702

RESUMEN

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.


Asunto(s)
Calcio , Proteínas Serina-Treonina Quinasas , Humanos , Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/fisiología , Proliferación Celular , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
5.
Prostate Cancer Prostatic Dis ; 25(4): 641-649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35732821

RESUMEN

BACKGROUND: Men using cholesterol-lowering statin medications have been found to have lower risks of both advanced and fatal prostate cancer in multiple registry-based studies and prospective cohort studies. Statin use has also been associated with longer survival among men already diagnosed with prostate cancer. Mechanisms responsible for purported anti-cancer effects of statins are not well understood but may offer insight into prostate cancer biology. METHODS: We summarise epidemiological data from studies of statins and prostate cancer and discuss to what extent these findings can be interpreted as causal. Additionally, lipid-mediated and non-lipid-mediated mechanisms that may contribute to potential anti-cancer effects of statins are reviewed. Finally, we consider treatment settings and molecular subgroups of men who might benefit more than others from statin use in terms of prostate cancer-specific outcomes. RESULTS: Data from prospective observational studies generally reported a lower risk of fatal prostate cancer among statin users. There is some evidence for serum cholesterol-lowering as an indirect mechanism linking statins with advanced and fatal prostate cancer. Window-of-opportunity clinical trials show measurable levels of statins in prostate tissue highlighting potential for direct effects, whilst observational data suggest possible statin-driven modulation of prostate microenvironment inflammation. Additionally, emerging data from registry studies support a potential role for statins within the context of androgen deprivation therapy and anti-androgen treatment. CONCLUSION: Prospective and registry-based studies support a lower risk of advanced and fatal prostate cancer in statin users relative to non-users, as well as better outcomes among prostate cancer patients. The few randomised-controlled trials conducted so far have short follow-up, lack identified molecular subgroups, and do not provide additional support for the observational results. Consequently, additional evidence is required to determine which men may experience greatest benefit in terms of prostate cancer-specific outcomes and how statin effects may vary according to molecular tumour characteristics.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias de la Próstata , Prostatitis , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/diagnóstico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Antagonistas de Andrógenos/uso terapéutico , Estudios Prospectivos , Colesterol , Microambiente Tumoral , Estudios Observacionales como Asunto
6.
EMBO Rep ; 23(4): e51932, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080333

RESUMEN

Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL-4/6), chemokines (IL-8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore-forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.


Asunto(s)
Lisosomas , Membrana Celular/metabolismo , Proliferación Celular , Lisosomas/metabolismo
7.
Cell Death Dis ; 12(11): 1040, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725334

RESUMEN

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates cell and whole-body metabolism and supports tumorigenesis. The cellular impacts of perturbing CAMKK2 expression are, however, not yet fully characterised. By knocking down CAMKK2 levels, we have identified a number of significant subcellular changes indicative of perturbations in vesicle trafficking within the endomembrane compartment. To determine how they might contribute to effects on cell proliferation, we have used proteomics to identify Gemin4 as a direct interactor, capable of binding CAMKK2 and COPI subunits. Prompted by this, we confirmed that CAMKK2 knockdown leads to concomitant and significant reductions in δ-COP protein. Using imaging, we show that CAMKK2 knockdown leads to Golgi expansion, the induction of ER stress, abortive autophagy and impaired lysosomal acidification. All are phenotypes of COPI depletion. Based on our findings, we hypothesise that CAMKK2 sustains cell proliferation in large part through effects on organelle integrity and membrane trafficking.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Aparato de Golgi/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Vesículas Transportadoras/metabolismo , Ácidos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autofagia , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/química , Línea Celular Tumoral , Proliferación Celular , Proteína Coat de Complejo I/metabolismo , Secuencia Conservada , Aparato de Golgi/ultraestructura , Homeostasis , Humanos , Lisosomas/metabolismo , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Respuesta de Proteína Desplegada
8.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33547161

RESUMEN

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Asunto(s)
Elongasas de Ácidos Grasos/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida/métodos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/farmacología , Receptores Androgénicos/fisiología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Death Dis ; 11(10): 930, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122623

RESUMEN

RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteínas de Unión al GTP ral/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/administración & dosificación , Neoplasias Colorrectales/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Proteínas Recombinantes/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Transfección , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/biosíntesis , Proteínas de Unión al GTP ral/genética
10.
Proc Natl Acad Sci U S A ; 117(30): 18018-18028, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32651278

RESUMEN

CCN3 is a matricellular protein that promotes oligodendrocyte progenitor cell differentiation and myelination in vitro and ex vivo. CCN3 is therefore a candidate of interest in central nervous system (CNS) myelination and remyelination, and we sought to investigate the expression and role of CCN3 during these processes. We found CCN3 to be expressed predominantly by neurons in distinct areas of the CNS, primarily the cerebral cortex, hippocampus, amygdala, suprachiasmatic nuclei, anterior olfactory nuclei, and spinal cord gray matter. CCN3 was transiently up-regulated following demyelination in the brain of cuprizone-fed mice and spinal cord lesions of mice injected with lysolecithin. However, CCN3-/- mice did not exhibit significantly different numbers of oligodendroglia or differentiated oligodendrocytes in the healthy or remyelinating CNS, compared to WT controls. These results suggest that despite robust and dynamic expression in the CNS, CCN3 is not required for efficient myelination or remyelination in the murine CNS in vivo.


Asunto(s)
Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/etiología , Regulación de la Expresión Génica , Proteína Hiperexpresada del Nefroblastoma/genética , Remielinización/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Ratones , Vaina de Mielina/metabolismo , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología
11.
Cell Death Differ ; 27(9): 2726-2741, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32313199

RESUMEN

TRAIL-R2 (DR5) is a clinically-relevant therapeutic target and a key target for immune effector cells. Herein, we identify a novel interaction between TRAIL-R2 and the Skp1-Cullin-1-F-box (SCF) Cullin-Ring E3 Ubiquitin Ligase complex containing Skp2 (SCFSkp2). We find that SCFSkp2 can interact with both TRAIL-R2's pre-ligand association complex (PLAC) and ligand-activated death-inducing signalling complex (DISC). Moreover, Cullin-1 interacts with TRAIL-R2 in its active NEDDylated form. Inhibiting Cullin-1's DISC recruitment using the NEDDylation inhibitor MLN4924 (Pevonedistat) or siRNA increased apoptosis induction in response to TRAIL. This correlated with enhanced levels of the caspase-8 regulator FLIP at the TRAIL-R2 DISC, particularly the long splice form, FLIP(L). We subsequently found that FLIP(L) (but not FLIP(S), caspase-8, nor the other core DISC component FADD) interacts with Cullin-1 and Skp2. Importantly, this interaction is enhanced when FLIP(L) is in its DISC-associated, C-terminally truncated p43-form. Prevention of FLIP(L) processing to its p43-form stabilises the protein, suggesting that by enhancing its interaction with SCFSkp2, cleavage to the p43-form is a critical step in FLIP(L) turnover. In support of this, we found that silencing any of the components of the SCFSkp2 complex inhibits FLIP ubiquitination, while overexpressing Cullin-1/Skp2 enhances its ubiquitination in a NEDDylation-dependent manner. DISC recruitment of TRAF2, previously identified as an E3 ligase for caspase-8 at the DISC, was also enhanced when Cullin-1's recruitment was inhibited, although its interaction with Cullin-1 was found to be mediated indirectly via FLIP(L). Notably, the interaction of p43-FLIP(L) with Cullin-1 disrupts its ability to interact with FADD, caspase-8 and TRAF2. Collectively, our results suggest that processing of FLIP(L) to p43-FLIP(L) at the TRAIL-R2 DISC enhances its interaction with co-localised SCFSkp2, leading to disruption of p43-FLIP(L)'s interactions with other DISC components and promoting its ubiquitination and degradation, thereby modulating TRAIL-R2-mediated apoptosis.


Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Proteolisis/efectos de los fármacos , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
12.
Cell Rep ; 30(8): 2594-2602.e3, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101738

RESUMEN

Liquid-liquid phase separation is an increasingly recognized mechanism for compartmentalization in cells. Recent in vitro studies suggest that this organizational principle may apply to synaptic vesicle clusters. Here we test this possibility by performing microinjections at the living lamprey giant reticulospinal synapse. Axons are maintained at rest to examine whether reagents introduced into the cytosol enter a putative liquid phase to disrupt critical protein-protein interactions. Compounds that perturb the intrinsically disordered region of synapsin, which is critical for liquid phase organization in vitro, cause dispersion of synaptic vesicles from resting clusters. Reagents that perturb SH3 domain interactions with synapsin are ineffective at rest. Our results indicate that synaptic vesicles at a living central synapse are organized as a distinct liquid phase maintained by interactions via the intrinsically disordered region of synapsin.


Asunto(s)
Sinapsinas/química , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Potenciales de Acción , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Análisis por Conglomerados , Femenino , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Lampreas , Masculino , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/ultraestructura
13.
Annu Rev Cell Dev Biol ; 35: 111-129, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31340125

RESUMEN

Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.


Asunto(s)
Proteínas Portadoras/metabolismo , Estructuras de la Membrana Celular/química , Proteínas de la Membrana/metabolismo , Animales , Proteínas Portadoras/química , Membrana Celular/química , Membrana Celular/metabolismo , Estructuras de la Membrana Celular/metabolismo , Forma de la Célula , Humanos , Proteínas de la Membrana/química , Neoplasias/patología , Orgánulos/química , Orgánulos/metabolismo , Dominios Proteicos
14.
Cell Commun Signal ; 16(1): 77, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409180

RESUMEN

BACKGROUND: The deubiquitinase USP17 is overexpressed in NSCLC and has been shown to be required for the growth and motility of EGFR wild-type (WT) NSCLC cells. USP17 is also required for clathrin-mediated endocytosis of EGFR. Here, we examine the impact of USP17 depletion on the growth, as well as EGFR endocytosis and signaling, of EGFR mutant (MT) NSCLC cells. In particular, we examine NSCLC cells harboring an EGFR activating exon 19 deletion (HCC827), or both the L858R activating mutation and the T790M resistance gatekeeper mutation (H1975) which renders them resistant to EGFR tyrosine kinase inhibitors (TKIs). METHODS: MTT, trypan blue and clonogenic assays, confocal microscopy, Western blotting and cell cycle analysis were performed. RESULTS: USP17 depletion blocks the growth of EGFRMT NSCLC cells carrying either the EGFR exon 19 deletion, or L858R/T790M double mutation. In contrast to EGFRWT cells, USP17 depletion also triggers apoptosis of EGFRMT NSCLC cells. USP17 is required for clathrin-mediated endocytosis in these EGFRMT NSCLC cells, but it is not required for the internalization of the mutated EGFR receptors. Instead, USP17 depletion alters the localization of these receptors within the cell, and although it does not decrease basal EGFR activation, it potently reduces activation of Src, a key kinase in mutant EGFR-dependent tumorigenicity. Finally, we demonstrate that USP17 depletion can trigger apoptosis in EGFRWT NSCLC cells, when combined with the EGFR tyrosine kinase inhibitor (TKI) gefitinib. CONCLUSIONS: Our data reveals that USP17 facilitates trafficking and oncogenic signaling of mutant EGFR and indicates targeting USP17 could represent a viable therapeutic strategy in NSCLC tumours carrying either an EGFR activating mutation, or a resistance gatekeeper mutation.


Asunto(s)
Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/patología , Endopeptidasas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Mutación , Transducción de Señal , Células A549 , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Receptores ErbB/genética , Humanos , Transporte de Proteínas , Familia-src Quinasas/metabolismo
15.
J Pathol ; 244(4): 445-459, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29520890

RESUMEN

Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Centrosoma/enzimología , Neoplasias Colorrectales/enzimología , Interfase , Proteína Quinasa C/metabolismo , Células CACO-2 , Proliferación Celular , Forma de la Célula , Inestabilidad Cromosómica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Clasificación del Tumor , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Quinasa C/genética , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
16.
Traffic ; 19(1): 44-57, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972287

RESUMEN

Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans-endocytosis of the inter-cellular receptor-ligand EphB-ephrinB complex is required. The molecular mechanism underlying trans-endocytosis is poorly defined. Here we show that the process is clathrin- and Eps15R-mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co-cultures of EphB2- and ephrinB1-expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2-mediated cell repulsion as shown in a rescue experiment in the EphB2 co-culture assay where wild type Eps15R but not the clathrin-binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans-endocytosis and thereby cell repulsion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Clatrina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sitios de Unión , Línea Celular , Chlorocebus aethiops , Clatrina/química , Endocitosis , Efrina-B1/metabolismo , Células HeLa , Humanos , Ratones , Unión Proteica , Ratas , Receptor EphB2/metabolismo
17.
Elife ; 62017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28749339

RESUMEN

PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein ß-Arrestin1. Because ß-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a ß-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs ß-Arrestin1 membrane localization, ß-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by ß-Arrestin1 KD or inhibition of ß-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of ß-Arrestin1, ARHGAP21 and Cdc42.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Organoides/metabolismo , Fosfohidrolasa PTEN/genética , Huso Acromático/metabolismo , beta-Arrestina 1/genética , Animales , Sitios de Unión , Células CACO-2 , Membrana Celular/ultraestructura , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Organoides/citología , Organoides/ultraestructura , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura , Técnicas de Cultivo de Tejidos , beta-Arrestina 1/antagonistas & inhibidores , beta-Arrestina 1/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
18.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648660

RESUMEN

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Asunto(s)
Endocitosis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Animales , Fenómenos Biomecánicos , Fricción , Humanos , Metabolismo de los Lípidos , Dominios Proteicos , Ratas
19.
Nat Neurosci ; 20(5): 674-680, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28288125

RESUMEN

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Asunto(s)
Encéfalo/fisiología , Vaina de Mielina/fisiología , Regeneración/fisiología , Linfocitos T Reguladores/fisiología , Animales , Encéfalo/ultraestructura , Diferenciación Celular/fisiología , Femenino , Masculino , Ratones , Proteína Hiperexpresada del Nefroblastoma/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología
20.
Proc Natl Acad Sci U S A ; 113(40): 11226-11231, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27655892

RESUMEN

Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Nanotubos/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Calibración , Simulación por Computador , Fluorescencia , Lípidos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Propiedades de Superficie , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA