Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 30(9): 3078-3094, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821637

RESUMEN

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.


Asunto(s)
COVID-19 , Vacunas contra el Cáncer , Nanopartículas , Animales , Inmunización/métodos , Inmunoterapia , ARN Mensajero/metabolismo , SARS-CoV-2/genética , Bazo , Distribución Tisular , Vacunación/métodos
2.
J Control Release ; 343: 207-216, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077739

RESUMEN

Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein. However, it is unknown if LNPs can effectively deliver mRNA, which is much larger than siRNA, to the ischemic myocardium. Here, we evaluated the ability of LNPs to deliver mRNA to the myocardium upon ischemia-reperfusion injury functionally. By exploring the bio-distribution of fluorescently labeled LNPs, we observed that, upon reperfusion, LNPs accumulated in the infarct area of the heart. Subsequently, the functional delivery of modRNA was evaluated by the administration of firefly luciferase encoding modRNA. Concomitantly, a significant increase in firefly luciferase expression was observed in the heart upon myocardial reperfusion when compared to sham-operated animals. To characterize the targeted cells within the myocardium, we injected LNPs loaded with Cre modRNA into Cre-reporter mice. Upon LNP infusion, Tdtomato+ cells, derived from Cre mediated recombination, were observed in the infarct region as well as the epicardial layer upon LNP infusion. Within the infarct area, most targeted cells were cardiac fibroblasts but also some cardiomyocytes and macrophages were found. Although the expression levels were low compared to LNP-modRNA delivery into the liver, our data show the ability of LNPs to functionally deliver modRNA therapeutics to the damaged myocardium, which holds great promise for modRNA-based cardiac therapies.


Asunto(s)
Luciferasas de Luciérnaga , Nanopartículas , Animales , Infarto , Liposomas , Ratones , Miocardio , ARN Mensajero , ARN Interferente Pequeño/genética
3.
Adv Healthc Mater ; 11(5): e2101202, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34382360

RESUMEN

The therapeutic use of RNA interference is limited by the inability of siRNA molecules to reach their site of action, the cytosol of target cells. Lipid nanoparticles, including liposomes, are commonly employed as siRNA carrier systems to overcome this hurdle, although their widespread use remains limited due to a lack of delivery efficiency. More recently, nature's own carriers of RNA, extracellular vesicles (EVs), are increasingly being considered as alternative siRNA delivery vehicles due to their intrinsic properties. However, they are difficult to load with exogenous cargo. Here, EV-liposome hybrid nanoparticles (hybrids) are prepared and evaluated as an alternative delivery system combining properties of both liposomes and EVs. It is shown that hybrids are spherical particles encapsulating siRNA, contain EV-surface makers, and functionally deliver siRNA to different cell types. The functional behavior of hybrids, in terms of cellular uptake, toxicity, and gene-silencing efficacy, is altered as compared to liposomes and varies among recipient cell types. Moreover, hybrids produced with cardiac progenitor cell (CPC) derived-EVs retain functional properties attributed to CPC-EVs such as activation of endothelial signaling and migration. To conclude, hybrids combine benefits of both synthetic and biological drug delivery systems and might serve as future therapeutic carriers of siRNA.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/metabolismo , Liposomas , ARN Interferente Pequeño
4.
Nano Lett ; 21(4): 1888-1895, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33570966

RESUMEN

RNA therapeutics have high potential that is yet to be fully realized, largely due to challenges involved in the appropriate delivery to target cells. Extracellular vesicles (EVs) are lipid bound nanoparticles released by cells of all types and possess numerous features that may help overcome this hurdle and have emerged as a promising RNA delivery vehicle candidate. Despite extensive research into the engineering of EVs for RNA delivery, it remains unclear how the intrinsic RNA delivery efficiency of EVs compares to currently used synthetic RNA delivery vehicles. Using a novel CRISPR/Cas9-based RNA transfer reporter system, we compared the delivery efficiency of EVs to clinically approved state-of-the-art DLin-MC3-DMA lipid nanoparticles and several in vitro transfection reagents. We found that EVs delivered RNA several orders of magnitude more efficiently than these synthetic systems. This finding supports the continued research into EVs as potential RNA delivery vehicles.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberación de Medicamentos , ARN/genética , Transfección
5.
Curr Pharm Biotechnol ; 21(6): 467-479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065100

RESUMEN

OBJECTIVE: The high cost of orphan drugs limits their access by many patients, especially in low- and middle-income countries. Many orphan drugs are off-patent without alternative generic or biosimilar versions available. Production of these drugs at the point-of-care, when feasible, could be a cost-effective alternative. METHODS: The financial feasibility of this approach was estimated by setting up a small-scale production of recombinant human acid alpha-glucosidase (rhGAA). The commercial version of rhGAA is Myozyme™, and Lumizyme™ in the United States, which is used to treat Pompe disease. The rhGAA was produced in CHO-K1 mammalian cells and purified using multiple purification steps to obtain a protein profile comparable to Myozyme™. RESULTS: The established small-scale production of rhGAA was used to obtain a realistic cost estimation for the magistral production of this biological drug. The treatment cost of rhGAA using bedside production was estimated at $3,484/gram, which is 71% lower than the commercial price of Myozyme ™. CONCLUSION: This study shows that bedside production might be a cost-effective approach to increase the access of patients to particular life-saving drugs.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Producción de Medicamentos sin Interés Comercial/economía , Producción de Medicamentos sin Interés Comercial/métodos , Proteínas Recombinantes/aislamiento & purificación , alfa-Glucosidasas/aislamiento & purificación , Animales , Células CHO , Cricetinae , Cricetulus , Costos de los Medicamentos , Estudios de Factibilidad , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Humanos , Proteínas Recombinantes/economía , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Glucosidasas/economía , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
6.
Acc Chem Res ; 52(7): 1761-1770, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31181910

RESUMEN

Extracellular vesicles are nanoparticles produced by cells. They are composed of cellular membrane with associated membrane proteins that surrounds an aqueous core containing soluble molecules such as proteins and nucleic acids, like miRNA and mRNA. They are important in many physiological and pathological processes as they can transfer biological molecules from producer cells to acceptor cells. Preparation of the niche for cancer metastasis, stimulation of tissue regeneration and orchestration of the immune response are examples of the diverse processes in which extracellular vesicles have been implicated. As a result, these vesicles have formed a source of inspiration for many scientific fields. They could be used, for example, as liquid biopsies in diagnostics, as therapeutics in regenerative medicine, or as drug delivery vehicles for transport of medicines. In this Account, we focus on drug delivery applications. As we learn more and more about these vesicles, the complexity increases. What originally appeared to be a relatively uniform population of cellular vesicles is increasingly subdivided into different subsets. Cells make various distinct vesicle types whose physicochemical aspects and composition is influenced by parental cell type, cellular activation state, local microenvironment, biogenesis pathway, and intracellular cargo sorting routes. It has proven difficult to assess the effects of changes in production protocol on the characteristics of the cell-derived vesicle population. On top of that, each isolation method for vesicles necessarily enriches certain vesicle classes and subpopulations while depleting others. Also, each method is associated with a varying degree of vesicle purity and concomitant coisolation of nonvesicular material. What emerges is a staggering heterogeneity. This constitutes one of the main challenges of the field as small changes in production and isolation protocols may have large impact on the vesicle characteristics and on subsequent vesicle activity. We try to meet this challenge by careful experimental design and development of tools that enable robust readouts. By engineering the surface and cargo of extracellular vesicles through chemical and biological techniques, favorable characteristics can be enforced while unfavorable qualities can be overruled or masked. This is coupled to the precise evaluation of the interaction of extracellular vesicles with cells to determine the extracellular vesicle uptake routes and intracellular routing. Sensitive reporter assays enable reproducible analysis of functional delivery. This systematic evaluation and optimization of extracellular vesicles improves our insight into the critical determinants of extracellular vesicle activity and should improve translation into clinical application of engineered extracellular vesicles as a new class of drug delivery systems.


Asunto(s)
Portadores de Fármacos/química , Vesículas Extracelulares/química , Animales , Antineoplásicos/uso terapéutico , Bioingeniería , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Vesículas Extracelulares/metabolismo , Humanos , Ratones , Porcinos
7.
Int J Pharm ; 548(2): 793-802, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29275035

RESUMEN

There is a very large variety in the types of nanoparticulate lipid formulations for oligonucleotides, and remarkably, also a very large heterogeneity in the methods that are used for analyzing oligonucleotide load, encapsulation efficiency and oligonucleotide release. Furthermore, a literature survey showed that the extent to which these procedures are reported in scientific literature varies greatly, with some of them not even reporting any quantification at all. This greatly hampers the reproducibility of nanoparticle preparation between different researchers and between different laboratories, which slows down the clinical translation of such nanomedicines. In this work, a standardized extraction method from liposomes is proposed, in which potential contaminants from the carrier are removed by a simple extraction of the oligonucleotides. These extracts were then analyzed with seven commonly used methods for oligonucleotide quantification, including several absorbance based methods and the most commonly applied dye binding assay. Strikingly, differences in absolute values up to fourfold were found when the same sample was analyzed using different methods which should be taken into consideration when reports using different methods are compared. Furthermore, these results indicate that the most commonly applied method, the dye binding assay, may -without adaptations- not be suitable for short oligonucleotides like siRNAs. The found differences in quantification methods as described here underscore the need for proper documentation of methods to correctly interpret published results, which -with regard to oligonucleotide analysis- is currently lacking in many reports.


Asunto(s)
Nanopartículas/análisis , Nanopartículas/química , Oligonucleótidos/análisis , Oligonucleótidos/química , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Liposomas , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/química
8.
J Control Release ; 244(Pt B): 139-148, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27498021

RESUMEN

The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with CRISPR-associated proteins (Cas) are a part of the prokaryotic adaptive immune system and have successfully been repurposed for genome editing in mammalian cells. The CRISPR-Cas9 system has been used to correct genetic mutations and for replacing entire genes, opening up a world of possibilities for the treatment of genetic diseases. In addition, recently some new CRISPR-Cas systems have been discovered with interesting mechanistic variations. Despite these promising developments, many challenges have to be overcome before the system can be applied therapeutically in human patients and enabling delivery technology is one of the key challenges. Furthermore, the relatively high off-target effect of the system in its current form prevents it from being safely applied directly in the human body. In this review, the transformation of the CRISPR-Cas gene editing systems into a therapeutic modality will be discussed and the currently most realistic in vivo applications will be highlighted.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Transferencia de Gen , Terapia Genética , Animales , Edición Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...