Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Rev Drug Discov ; 23(4): 255-280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267543

RESUMEN

The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.


Asunto(s)
Proteínas de Transporte de Membrana , Medicina de Precisión , Humanos , Interacciones Farmacológicas , Desarrollo de Medicamentos
2.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 118-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37833845

RESUMEN

Hepatic impairment (HI) moderately (<5-fold) affects the systemic exposure (i.e., area under the plasma concentration-time curve [AUC]) of drugs that are substrates of the hepatic sinusoidal organic anion transporting polypeptide (OATP) transporters and are excreted unchanged in the bile and/or urine. However, the effect of HI on their AUC is much greater (>10-fold) for drugs that are also substrates of cytochrome P450 (CYP) 3A enzymes. Using the extended clearance model, through simulations, we identified the ratio of sinusoidal efflux clearance (CL) over the sum of metabolic and biliary CLs as important in predicting the impact of HI on the AUC of dual OATP/CYP3A substrates. Because HI may reduce hepatic CYP3A-mediated CL to a greater extent than biliary efflux CL, the greater the contribution of the former versus the latter, the greater the impact of HI on drug AUC ratio (AUCRHI ). Using physiologically-based pharmacokinetic modeling and simulation, we predicted relatively well the AUCRHI of OATP substrates that are not significantly metabolized (pitavastatin, rosuvastatin, valsartan, and gadoxetic acid). However, there was a trend toward underprediction of the AUCRHI of the dual OATP/CYP3A4 substrates fimasartan and atorvastatin. These predictions improved when the sinusoidal efflux CL of these two drugs was increased in healthy volunteers (i.e., before incorporating the effect of HI), and by modifying the directionality of its modulation by HI (i.e., increase or decrease). To accurately predict the effect of HI on AUC of hepatobiliary cleared drugs it is important to accurately predict all hepatobiliary pathways, including sinusoidal efflux CL.


Asunto(s)
Citocromo P-450 CYP3A , Transportadores de Anión Orgánico , Humanos , Citocromo P-450 CYP3A/metabolismo , Hígado/metabolismo , Transporte Biológico , Rosuvastatina Cálcica , Transportadores de Anión Orgánico/metabolismo , Interacciones Farmacológicas
3.
Drug Metab Dispos ; 52(3): 198-209, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38123948

RESUMEN

Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.


Asunto(s)
Industria Farmacéutica , Sistemas Microfisiológicos , Animales , Humanos , Descubrimiento de Drogas
6.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 261-273, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36540952

RESUMEN

Physiologically based pharmacokinetic models, populated with drug-metabolizing enzyme and transporter (DMET) abundance, can be used to predict the impact of hepatic impairment (HI) on the pharmacokinetics (PK) of drugs. To increase confidence in the predictive power of such models, they must be validated by comparing the predicted and observed PK of drugs in HI obtained by phenotyping (or probe drug) studies. Therefore, we first predicted the effect of all stages of HI (mild to severe) on the PK of drugs primarily metabolized by cytochrome P450 (CYP) 3A enzymes using the default HI module of Simcyp Version 21, populated with hepatic and intestinal CYP3A abundance data. Then, we validated the predictions using CYP3A probe drug phenotyping studies conducted in HI. Seven CYP3A substrates, metabolized primarily via CYP3A (fraction metabolized, 0.7-0.95), with low to high hepatic availability, were studied. For all stages of HI, the predicted PK parameters of drugs were within twofold of the observed data. This successful validation increases confidence in using the DMET abundance data in HI to predict the changes in the PK of drugs cleared by DMET for which phenotyping studies in HI are not available or cannot be conducted. In addition, using CYP3A drugs as an example, through simulations, we identified the salient PK factors that drive the major changes in exposure (area under the plasma concentration-time profile curve) to drugs in HI. This theoretical framework can be applied to any drug and DMET to quickly determine the likely magnitude of change in drug PK due to HI.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Simulación por Computador , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Modelos Biológicos
8.
Pharmacol Ther ; 238: 108271, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36002079

RESUMEN

Predicting transporter-based drug clearance (CL) and tissue concentrations (TC) in humans is important to reduce the risk of failure during drug development. In addition, when transporters are present at the tissue:blood interface (e.g., in the liver, blood-brain barrier), predicting TC is important to predict the drug's efficacy and safety. With the advent of quantitative targeted proteomics, in vitro to in vivo extrapolation (IVIVE) of transporter-based drug CL and TC is now possible using transporter-expressing models (cells lines, membrane vesicles) and the in vivo to in vitro relative expression of transporters (REF) as a scaling factor. Unlike other approaches based on physiological scaling, the REF approach is not dependent on the availability of primary cells. Here, we review the REF approach and compare it with other IVIVE approaches such as the relative activity factor approach and physiological scaling. For each of these scaling approaches, we review their underlying principles, assumptions, methodology, predictive performance, as well as advantages and limitations. Finally, we discuss current gaps in IVIVE of transporter-based CL and TC and propose possible reasons for these gaps as well as areas to investigate to bridge these gaps.


Asunto(s)
Proteínas de Transporte de Membrana , Modelos Biológicos , Transporte Biológico , Interacciones Farmacológicas , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Tasa de Depuración Metabólica
9.
Clin Pharmacol Ther ; 112(3): 461-484, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35390174

RESUMEN

Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post-translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation-mediated changes in transporter function on drug disposition and response.


Asunto(s)
Proteínas Portadoras , Proteínas de Transporte de Membrana , Transporte Biológico , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Preparaciones Farmacéuticas , Receptores Citoplasmáticos y Nucleares/genética
10.
CPT Pharmacometrics Syst Pharmacol ; 11(1): 55-67, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668334

RESUMEN

As one of the key components in model-informed drug discovery and development, physiologically-based pharmacokinetic (PBPK) modeling linked with in vitro-to-in vivo extrapolation (IVIVE) is widely applied to quantitatively predict drug-drug interactions (DDIs) on drug-metabolizing enzymes and transporters. This study aimed to investigate an IVIVE for intestinal P-glycoprotein (Pgp, ABCB1)-mediated DDIs among three Pgp substrates, digoxin, dabigatran etexilate, and quinidine, and two Pgp inhibitors, itraconazole and verapamil, via PBPK modeling. For Pgp substrates, assuming unbound Michaelis-Menten constant (Km ) to be intrinsic, in vitro-to-in vivo scaling factors for maximal Pgp-mediated efflux rate (Jmax ) were optimized based on the clinically observed results without co-administration of Pgp inhibitors. For Pgp inhibitors, PBPK models utilized the reported in vitro values of Pgp inhibition constants (Ki ), 1.0 µM for itraconazole and 2.0 µM for verapamil. Overall, the PBPK modeling sufficiently described Pgp-mediated DDIs between these substrates and inhibitors with the prediction errors of less than or equal to ±25% in most cases, suggesting a reasonable IVIVE for Pgp kinetics in the clinical DDI results. The modeling results also suggest that Pgp kinetic parameters of both the substrates (Km and Jmax ) and the inhibitors (Ki ) are sensitive to Pgp-mediated DDIs, thus being key for successful DDI prediction. It would also be critical to incorporate appropriate unbound inhibitor concentrations at the site of action into PBPK models. The present results support a quantitative prediction of Pgp-mediated DDIs using in vitro parameters, which will significantly increase the value of in vitro studies to design and run clinical DDI studies safely and effectively.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Dabigatrán/farmacocinética , Digoxina/farmacocinética , Intestinos/metabolismo , Quinidina/farmacocinética , Adulto , Área Bajo la Curva , Simulación por Computador , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Humanos , Itraconazol/farmacología , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Modelos Biológicos , Verapamilo/farmacología , Adulto Joven
11.
Clin Pharmacol Drug Dev ; 11(1): 123-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34145987

RESUMEN

Gefapixant (MK-7264, AF-219) is a first-in-class P2X3 antagonist in development for refractory or unexplained chronic cough. Gefapixant is primarily cleared by renal excretion. To assess the importance of the multidrug and toxin extrusion protein 1 (MATE1) and MATE2K transporters in the elimination of gefapixant, a drug-drug interaction study was conducted evaluating the effect of coadministration of a single dose of pyrimethamine, a competitive inhibitor of MATE1 and MATE2K, on the single-dose pharmacokinetics of gefapixant in healthy participants. Safety and tolerability were also assessed. In this open-label, 2-period, fixed-sequence study, a 45-mg dose of gefapixant was administered to 12 participants in period 1. After a 7-day washout, a 50-mg dose of pyrimethamine was administered 3 hours before a 45-mg dose of gefapixant in period 2. Compared with the administration of gefapixant alone, concomitant dosing of gefapixant with pyrimethamine increased the total gefapixant plasma exposure (area under the plasma concentration-time curve from time 0 to infinity) by 24%, reduced gefapixant renal clearance by 30%, and increased gefapixant mean terminal half-life from 7.7 to 10.3 hours. The most frequently reported adverse events were dysgeusia, hypogeusia, and dry mouth; all adverse events were considered of mild intensity and resolved by the end of the study. These results support that MATE1 and/or MATE2K contribute to the renal clearance of gefapixant, but the effect of inhibition of these transporters on gefapixant pharmacokinetics is not considered clinically meaningful.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X , Pirimetamina , Humanos , Pirimetamina/efectos adversos , Pirimidinas , Receptores Purinérgicos P2X3 , Sulfonamidas
12.
Clin Pharmacol Drug Dev ; 11(3): 406-412, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34821075

RESUMEN

Gefapixant (MK-7264, AF-219), a first-in-class P2X3 antagonist, is being developed as oral treatment for refractory or unexplained chronic cough. Based on in vitro data, gefapixant exerts inhibitory activity on the organic anion transporter (OAT) P1B1 transporter. Therefore, a drug-drug interaction study evaluating the potential effects of gefapixant on the OATP1B1 drug transporter, using pitavastatin as a sensitive probe substrate, was conducted. An open-label, 2-period, fixed-sequence study in 20 healthy adults 18 to 55 years old was conducted. In period 1, a 1-mg oral dose of pitavastatin was administered to each participant. After a ≥4-day washout, in period 2 participants received a 45-mg oral dose of gefapixant twice daily on days 1 through 4. On day 2 of period 2, pitavastatin was coadministered with the morning dose of gefapixant. Pitavastatin exposures following single-dose administration with and without multiple doses of gefapixant were similar: geometric mean ratio (90% confidence interval) of pitavastatin area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞ ) (pitavastatin + gefapixant/pitavastatin alone) was 0.97 (0.93-1.02). The ratio of pitavastatin lactone AUC0-∞ to pitavastatin AUC0-∞ was also comparable between treatments. Administration of gefapixant and pitavastatin was generally well tolerated, with no safety findings of concern. These results support that gefapixant has a low potential to inhibit the OATP1B1 transporter.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X3 , Adolescente , Adulto , Humanos , Persona de Mediana Edad , Preparaciones Farmacéuticas , Antagonistas del Receptor Purinérgico P2X/efectos adversos , Pirimidinas , Quinolinas , Sulfonamidas , Adulto Joven
14.
Pharm Res ; 38(5): 843-850, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33723794

RESUMEN

PURPOSE: To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen. METHOD: DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering. RESULTS: The permeable peptides representing energy independent mechanism of permeability showed higher biotinylation in LCMPA. Individual peptide permeability results from LCMPA correlated well with shifts in potency in cellular versus biochemical assays (i.e., cellular/ biochemical ratio) demonstrating quantitative correlation to intracellular barrier in intact cells. CONCLUSION: The study provides a novel membrane permeability assay that has potential to evaluate energy independent transport of diverse peptides.


Asunto(s)
Bioensayo/métodos , Composición de Medicamentos/métodos , Péptidos/farmacocinética , Alquinos/química , Compuestos de Bencilo/química , Biotina/química , Permeabilidad de la Membrana Celular , Química Clic , Células HCT116 , Humanos , Liposomas , Péptidos/administración & dosificación
15.
Clin Pharmacol Ther ; 109(2): 403-415, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32705692

RESUMEN

Renal impairment (RI) is known to influence the pharmacokinetics of nonrenally eliminated drugs, although the mechanism and clinical impact is poorly understood. We assessed the impact of RI and single dose oral rifampin (RIF) on the pharmacokinetics of CYP3A, OATP1B, P-gp, and BCRP substrates using a microdose cocktail and OATP1B endogenous biomarkers. RI alone had no impact on midazolam (MDZ), maximum plasma concentration (Cmax ), and area under the curve (AUC), but a progressive increase in AUC with RI severity for dabigatran (DABI), and up to ~2-fold higher AUC for pitavastatin (PTV), rosuvastatin (RSV), and atorvastatin (ATV) for all degrees of RI was observed. RIF did not impact MDZ, had a progressively smaller DABI drug-drug interaction (DDI) with increasing RI severity, a similar 3.1-fold to 4.4-fold increase in PTV and RSV AUC in healthy volunteers and patients with RI, and a diminishing DDI with RI severity from 6.1-fold to 4.7-fold for ATV. Endogenous biomarkers of OATP1B (bilirubin, coproporphyrin I/III, and sulfated bile salts) were generally not impacted by RI, and RIF effects on these biomarkers in RI were comparable or larger than those in healthy volunteers. The lack of a trend with RI severity of PTV and several OATP1B biomarkers, suggests that mechanisms beyond RI directly impacting OATP1B activity could also be considered. The DABI, RSV, and ATV data suggest an impact of RI on intestinal P-gp, and potentially BCRP activity. Therefore, DDI data from healthy volunteers may represent a worst-case scenario for clinically derisking P-gp and BCRP substrates in the setting of RI.


Asunto(s)
Interacciones Farmacológicas/fisiología , Enfermedades Renales/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Área Bajo la Curva , Biomarcadores/metabolismo , Voluntarios Sanos , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Midazolam/farmacocinética , Rifampin/farmacocinética
16.
Drug Metab Dispos ; 48(11): 1147-1160, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943412

RESUMEN

Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 µM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5µM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Descubrimiento de Drogas/métodos , Ácido Taurocólico/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Humanos , Concentración 50 Inhibidora , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
17.
Toxicol Sci ; 177(1): 281-299, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559301

RESUMEN

Drug-induced liver injury is a major reason for drug candidate attrition from development, denied commercialization, market withdrawal, and restricted prescribing of pharmaceuticals. The metabolic bioactivation of drugs to chemically reactive metabolites (CRMs) contribute to liver-associated adverse drug reactions in humans that often goes undetected in conventional animal toxicology studies. A challenge for pharmaceutical drug discovery has been reliably selecting drug candidates with a low liability of forming CRM and reduced drug-induced liver injury potential, at projected therapeutic doses, without falsely restricting the development of safe drugs. We have developed an in vivo rat liver transcriptional signature biomarker reflecting the cellular response to drug bioactivation. Measurement of transcriptional activation of integrated nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) electrophilic stress, and nuclear factor erythroid 2-related factor 1 (NRF1) proteasomal endoplasmic reticulum (ER) stress responses, is described for discerning estimated clinical doses of drugs with potential for bioactivation-mediated hepatotoxicity. The approach was established using well benchmarked CRM forming test agents from our company. This was subsequently tested using curated lists of commercial drugs and internal compounds, anchored in the clinical experience with human hepatotoxicity, while agnostic to mechanism. Based on results with 116 compounds in short-term rat studies, with consideration of the maximum recommended daily clinical dose, this CRM mechanism-based approach yielded 32% sensitivity and 92% specificity for discriminating safe from hepatotoxic drugs. The approach adds new information for guiding early candidate selection and informs structure activity relationships (SAR) thus enabling lead optimization and mechanistic problem solving. Additional refinement of the model is ongoing. Case examples are provided describing the strengths and limitations of the approach.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Preparaciones Farmacéuticas , Animales , Desarrollo de Medicamentos , Proteína 1 Asociada A ECH Tipo Kelch , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar
18.
Toxicol Sci ; 170(1): 180-198, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30903168

RESUMEN

Inhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.5-fold increases in liver and plasma levels, respectively, of the sum of the 3 most prevalent taurine conjugated bile acids (T3-BA), approximately 90% decrease in plasma and liver glycocholic acid, and a distinct bile acid regulating gene expression pattern, without resulting in hepatotoxicity. Among the Bsep inhibitors, only asunaprevir and TAK-875 resulted in serum transaminase and total bilirubin increases associated with increases in plasma T3-BA that were enhanced by Bsep KD. Benzbromarone, lopinavir, and simeprevir caused smaller increases in plasma T3-BA, but did not result in hepatotoxicity in Bsep KD rats. Bosentan, cyclosporine A, and ritonavir, however, showed no enhancement of T3-BA in plasma in Bsep KD rats, as well as Bsep noninhibitors acetaminophen, MK-0974, or clarithromycin. T3-BA findings were further strengthened through monitoring TCA-d4 converted from cholic acid-d4 overcoming interanimal variability in endogenous bile acids. Bsep KD also altered liver and/or plasma levels of asunaprevir, TAK-875, TAK-875 acyl-glucuronide, benzbromarone, and bosentan. The Bsep KD rat model has revealed differences in the effects on bile acid homeostasis among Bsep inhibitors that can best be monitored using measures of T3-BA and TCA-d4 in plasma. However, the phenotype caused by Bsep inhibition is complex due to the involvement of several compensatory mechanisms.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Preparaciones Farmacéuticas/administración & dosificación , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Animales , Bilirrubina/sangre , Técnicas de Silenciamiento del Gen , Masculino , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Ácido Tauroquenodesoxicólico/sangre , Transaminasas/sangre
19.
Clin Pharmacol Ther ; 106(1): 228-237, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30673124

RESUMEN

For in vitro to in vivo extrapolation (IVIVE) of brain distribution of drugs that are transported at the human blood-brain barrier (BBB), it is important to quantify the interindividual and regional variability of drug transporter abundance at this barrier. Therefore, using quantitative targeted proteomics, we compared the abundance of adenosine triphosphate-binding cassette and solute carrier transporters in brain microvascular endothelial cells (BMECs) isolated from postmortem specimens of two matched brain regions, the occipital (Brodmann Area (BA)17) and parietal (BA39) lobe, from 30 adults. Of the quantifiable transporters, the abundance ranked: glucose transporter (GLUT)1 > breast cancer resistance protein > P-glycoprotein (P-gp) > equilibrative nucleoside transporter (ENT)1 > organic anion-transporting polypeptide (OATP)2B1. The abundance of multidrug resistance protein 1/2/3/4, OATP1A2, organic anion transporter (OAT)3, organic cation transporter (OCT)1/2, OCTN1/2, or ENT2 was below the limit of quantification. Transporter abundance per gram of tissue (scaled using GLUT1 abundance in BMEC vs. brain homogenate) in BA17 was 30-42% higher than BA39. The interindividual variability in transporter abundance (percentage of coefficient of variation (%CV)) was 35-57% (BA17) and 27-46% (BA39). These data can be used in proteomics-informed bottom-up IVIVE to predict human brain drug distribution.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteómica/métodos , Transportadoras de Casetes de Unión a ATP/metabolismo , Adulto , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transportadores de Anión Orgánico/metabolismo
20.
Clin Pharmacol Ther ; 104(5): 900-915, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29756222

RESUMEN

Drug transporters are critically important for the absorption, distribution, metabolism, and excretion (ADME) of many drugs and endogenous compounds. Therefore, disruption of these pathways by inhibition, induction, genetic polymorphisms, or disease can have profound effects on overall physiology, drug pharmacokinetics, drug efficacy, and toxicity. This white paper provides a review of changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, and identifies opportunities to advance the field.


Asunto(s)
Enfermedad Aguda , Enfermedad Crónica/tratamiento farmacológico , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Humanos , Moduladores del Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...