Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(1): 44-58, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223185

RESUMEN

In this study on healthy male mice using confocal imaging of dye spreading in the brain and its further accumulation in the peripheral lymphatics, we demonstrate stronger effects of photobiomodulation (PBM) on the brain's drainage system in sleeping vs. awake animals. Using the Pavlovian instrumental transfer probe and the 2-objects-location test, we found that the 10-day course of PBM during sleep vs. wakefulness promotes improved learning and spatial memory in mice. For the first time, we present the technology for PBM under electroencephalographic (EEG) control that incorporates modern state of the art facilities of optoelectronics and biopotential detection and that can be built of relatively cheap and commercially available components. These findings open a new niche in the development of smart technologies for phototherapy of brain diseases during sleep.

2.
Biomolecules ; 13(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-38002287

RESUMEN

Anesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain. There is growing evidence that anesthesia can disrupt the integrity of the blood-brain barrier (BBB), leading to neuroinflammation and neurotoxicity. However, there are no widely used methods for real-time BBB monitoring during surgery. The development of technologies for an express diagnosis of the opening of the BBB (OBBB) is a challenge for reducing post-surgical/anesthesia consequences. In this study on male rats, we demonstrate a successful application of machine learning technology, such as artificial neural networks (ANNs), to recognize the OBBB induced by isoflurane, which is widely used in surgery. The ANNs were trained on our previously presented data obtained on the sound-induced OBBB with an 85% testing accuracy. Using an optical and nonlinear analysis of the OBBB, we found that 1% isoflurane does not induce any changes in the BBB, while 4% isoflurane caused significant BBB leakage in all tested rats. Both 1% and 4% isoflurane stimulate the brain's drainage system (BDS) in a dose-related manner. We show that ANNs can recognize the OBBB induced by 4% isoflurane in 57% of rats and BDS activation induced by 1% isoflurane in 81% of rats. These results open new perspectives for the development of clinically significant bedside technologies for EEG-monitoring of OBBB and BDS.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Isoflurano , Masculino , Ratas , Animales , Isoflurano/farmacología , Barrera Hematoencefálica , Anestésicos por Inhalación/farmacología , Encéfalo , Electroencefalografía
3.
Adv Exp Med Biol ; 1438: 45-50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845438

RESUMEN

There is strong evidence that augmentation of the brain's waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain's waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon. Our results clearly demonstrate that PS-mediated stimulation of the brain's waste disposal system is accompanied by activation of lymphatic contractility associated with subsequent intracellular production of the reactive oxygen species and the nitric oxide underlying lymphatic relaxation. Thus, PS stimulates the brain's waste disposal system by influencing the mechanisms of regulation of lymphatic pumping.


Asunto(s)
Encéfalo , Oxígeno Singlete , Encéfalo/fisiología , Meninges , Óxido Nítrico , Especies Reactivas de Oxígeno
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37762000

RESUMEN

Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.

5.
Pharmaceutics ; 15(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36839889

RESUMEN

The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.

6.
Adv Exp Med Biol ; 1395: 53-57, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527613

RESUMEN

The blood-brain barrier (BBB) poses a significant challenge for drug delivery to the brain. Therefore, the development of safe methods for an effective delivery of medications to the brain can be a revolutionary step in overcoming this limitation. Using a quantum-dot-based 1267 nm laser (photosensitiser-free generation of singlet oxygen), we clearly show the photostimulation of lymphatic delivery of bevacizumab (BMZ) to the brain tissues and the meninges. These pilot findings open promising perspectives for photomodulation of a lymphatic brain drug delivery bypassing the BBB, and potentially enabling a breakthrough strategy in therapy of glioma using BMZ and other chemotherapy drugs.


Asunto(s)
Vasos Linfáticos , Oxígeno Singlete , Bevacizumab , Encéfalo , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos
7.
Front Oncol ; 12: 1010188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313687

RESUMEN

Background: The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM via increasing BZM distribution to the brain along the cerebral vessels. Methods: The experiments were performed on Wistar male rats (200-250 g, n=161) using transfected C6-TagRFP cell line and the loud rock music for OBBB. The OBBB was assessed by spectrofluorometric assay of Evans Blue (EB) extravasation and confocal imaging of fluorescent BZM (fBZM) delivery into the brain. Additionally, distribution of fBZM and Omniscan in the brain was studied using fluorescent and magnetic resonance imaging (MRI), respectively. To analyze the therapeutic effects of BZM on the GBM growth in rats without and with OBBB, the GBM volume (MRI scans), as well as immunohistochemistry assay of proliferation (Ki67 marker) and apoptosis (Bax marker) in the GBM cells were studied. The Mann-Whitney-Wilcoxon test was used for all analysis, the significance level was p < 0.05, n=7 in each group. Results: Our finding clearly demonstrates that music-induced OBBB increases the delivery of EB into the brain tissues and the extravasation of BZM into the brain around the cerebral vessels of rats with GBM. Music significantly increases distribution of tracers (fBZM and Omniscan) in the rat brain through the pathways of brain drainage system (perivascular and lymphatic), which are an important route of drug delivery into the brain. The music-induced OBBB improves the suppressive effects of BZM on the GBM volume and the cellular mechanisms of tumor progression that was accompanied by higher survival among rats in the GBM+BZM+Music group vs. other groups. Conclusion: We hypothesized that music improves the therapeutic effects of BZM via OBBB in the normal cerebral vessels and lymphatic drainage of the brain tissues. This contributes better distribution of BZM in the brain fluids and among the normal cerebral vessels, which are used by GBM for invasion and co-opt existing vessels as a satellite tumor form. These results open the new perspectives for an improvement of therapeutic effects of BZM via the music-induced OBBB for BZM in the normal cerebral vessels, which are used by GBM for migration and progression.

8.
J Acupunct Meridian Stud ; 15(1): 43-49, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35770573

RESUMEN

Background: The development of new methods of drug brain delivery is a crucial step for the effective therapy of the brain diseases. Pharma- and acupuncture are the forms of alternative therapy of the brain pathology, including an increase in the permeability of blood-brain barrier. However, the mechanisms of pharma- and acupuncture-mediated effects on the brain physiology remain not fully understood. Results: This pilot study on healthy mice clearly demonstrates the Evans Blue spreading in the mouse head and in the brain via the perivascular spaces (PVSs) of the trigeminal structure and the cribriform plate after the dye injection into the Feng Chi point (Galbladder 20, GB20). Conclusion: These results suggest that pharmacopuncture at GB20 can be a perspective method for brain drug delivery via PVSs.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Animales , Encéfalo , Sistema Linfático , Ratones , Proyectos Piloto
9.
Pharmaceutics ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36678667

RESUMEN

The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance. Therefore, it is necessary to develop technologies to overcome the obstacles facing nose-to-brain delivery of promising pharmaceuticals. In this study, we clearly demonstrate intranasal delivery of liposomes to the mouse brain reaching glioblastoma (GBM). In the experiments with ablation of the meningeal lymphatic network, we report an important role of meningeal pathway for intranasal delivery of liposomes to the brain. Our data revealed that GBM is characterized by a dramatic reduction of intranasal delivery of liposomes to the brain that was significantly improved by near-infrared (1267 nm) photostimulation of the lymphatic vessels in the area of the cribriform plate and the meninges. These results open new perspectives for non-invasive improvement of efficiency of intranasal delivery of cancer drugs to the brain tissues using nanocarriers and near-infrared laser-based therapeutic devices, which are commercially available and widely used in clinical practice.

10.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943796

RESUMEN

The deposition of amyloid-ß (Aß) in the brain is a risk factor for Alzheimer's disease (AD). Therefore, new strategies for the stimulation of Aß clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy. In our previous studies, we clearly demonstrated the PS-mediated stimulation of lymphatic clearing functions, including Aß removal from the brain. There is increasing evidence that sleep plays an important role in Aß clearance. Here, we tested our hypothesis that PS at night can stimulate Aß clearance from the brain more effectively than PS during the day. Our results on healthy mice show that Aß clearance from the brain occurs faster at night than during wakefulness. The PS course at night improves memory and reduces Aß accumulation in the brain of AD mice more effectively than the PS course during the day. Our results suggest that night PS is a more promising candidate as an effective method in preventing AD than daytime PS. These data are an important informative platform for the development of new noninvasive and nonpharmacological technologies for AD therapy as well as for preventing Aß accumulation in the brain of people with disorder of Aß metabolism, sleep deficit, elderly age, and jet lag.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Luz , Animales , Electroencefalografía , Colorantes Fluorescentes/metabolismo , Linfa/metabolismo , Masculino , Memoria/efectos de la radiación , Ratones Endogámicos BALB C , Fases del Sueño/fisiología , Fases del Sueño/efectos de la radiación , Vigilia/fisiología , Vigilia/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA