Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36298, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263154

RESUMEN

Purpose: Current monoclonal antibody-based treatment approaches for cutaneous T cell lymphoma (CTCL) rely heavily on the ability to identify a tumor specific target that is essentially absent on normal cells. Herein, we propose tumor associated glycoprotein-72 (TAG-72) as one such target. TAG-72 is a mucin-associated, truncated O-glycan that has been identified as a chimeric antigen receptor (CAR)-T cell target in solid tumor indications. To date, TAG-72 targeting has not been considered in the setting of hematological malignancies. Experimental design: CD3+ cells from patients with CTCL were analyzed for TAG-72 expression by flow cytometry. Immunohistochemistry was used to assess TAG-72 expression in CTCL patient skin lesions and a TAG-72 ELISA was employed to assess soluble TAG-72 (CA 72-4) in patient plasma. TAG-72 CAR transduction was performed on healthy donor (HD) and CTCL T cells and characterized by flow cytometry. In vitro CAR-T cell function was assessed by flow cytometry and xCELLigence® using patient peripheral blood mononuclear cells and proof-of-concept ovarian cancer cell lines. In vivo CAR-T cell function was assessed in a proof-of-concept, TAG-72+ ovarian cancer xenograft mouse model. Results: TAG-72 expression was significantly higher on total CD3+ T cells and CD4+ subsets in CTCL donors across disease stages, compared to that of HDs. TAG-72 was also present in CTCL patient skin lesions, whereas CA 72-4 was detected at low levels in both CTCL patient and HD plasma with no differences between the two groups. In vitro cytotoxicity assays showed that anti-TAG-72 CAR-T cells significantly, and specifically reduced CD3+TAG-72+ expressing CTCL cells, compared to culture with unedited T cells (no CAR). CTCL CAR-T cells had comparable function to HD CAR-T cells in vitro and CAR-T cells derived from CTCL patients eradicated cancer cells in vivo. Conclusion: This study shows the first evidence of TAG-72 as a possible target for the treatment of CTCL.

2.
Front Immunol ; 13: 968395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059451

RESUMEN

Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary. In this review, we discuss the current obstacles to CAR-T cell therapy and highlight potential targets in treating CTCL. Looking forward, we propose strategies to develop more powerful dual CARs that are advancing towards the clinic in CTCL therapy.


Asunto(s)
Linfoma Cutáneo de Células T , Receptores Quiméricos de Antígenos , Neoplasias Cutáneas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma Cutáneo de Células T/terapia , Receptores Quiméricos de Antígenos/genética , Neoplasias Cutáneas/terapia , Linfocitos T
3.
Transl Oncol ; 24: 101477, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35905640

RESUMEN

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clinical impact on the treatment of hematological malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors.

4.
Mol Ther Oncolytics ; 20: 325-341, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33614914

RESUMEN

Chimeric antigen receptor (CAR) T cells have revolutionized blood cancer immunotherapy; however, their efficacy against solid tumors has been limited. A common mechanism of tumor escape from single target therapies is downregulation or mutational loss of the nominal epitope. Targeting multiple antigens may thus improve the effectiveness of CAR immunotherapies. We generated dual CAR-T cells targeting two tumor antigens: TAG-72 (tumor-associated glycoprotein 72) and CD47. TAG-72 is a pan-adenocarcinoma oncofetal antigen, highly expressed in ovarian cancers, with increased expression linked to disease progression. CD47 is ubiquitously overexpressed in multiple tumor types, including ovarian cancer; it is a macrophage "don't eat me" signal. However, CD47 is also expressed on many normal cells. To avoid this component of the dual CAR-T cells killing healthy tissue, we designed a truncated CD47 CAR devoid of intracellular signaling domains. The CD47 CAR facilitates binding to CD47+ cells, increasing the prospect of TAG-72+ cell elimination via the TAG-72 CAR. Furthermore, we could reduce the damage to normal tissue by monomerizing the CD47 CAR. Our results indicate that the co-expression of the TAG-72 CAR and the CD47-truncated monomer CAR on T cells could be an effective, dual CAR-T cell strategy for ovarian cancer, also applicable to other adenocarcinomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...