Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(9): 110880, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39310760

RESUMEN

Substantial changes in energy metabolism are a hallmark of pancreatic cancer. To adapt to hypoxic and nutrient-deprived microenvironments, pancreatic cancer cells remodel their bioenergetics from oxidative phosphorylation to glycolysis. This bioenergetic shift makes mitochondria an Achilles' heel. Since mitochondrial function remains essential for pancreatic cancer cells, further depleting mitochondrial energy production is an appealing treatment target. However, identifying effective mitochondrial targets for treatment is challenging. Here, we developed an approach, mitochondria-targeted cancer analysis using survival and expression (mCAUSE), to prioritize target proteins from the entire mitochondrial proteome. Selected proteins were further tested for their impact on pancreatic cancer cell phenotypes. We discovered that targeting a dynamin-related GTPase, OPA1, which controls mitochondrial fusion and cristae, effectively suppresses pancreatic cancer activities. Remarkably, when combined with a mutation-specific KRAS inhibitor, OPA1 inhibition showed a synergistic effect. Our findings offer a therapeutic strategy against pancreatic cancer by simultaneously targeting mitochondria dynamics and KRAS signaling.

2.
J Cell Biol ; 223(12)2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39320351

RESUMEN

Metastasis initiates when cancer cells escape from the primary tumor, which requires changes to intercellular junctions. Claudins are transmembrane proteins that form the tight junction, and their expression is reduced in aggressive breast tumors. However, claudins' roles during breast cancer metastasis remain unclear. We used gain- and loss-of-function genetics in organoids isolated from murine breast cancer models to establish that Cldn7 suppresses invasion and metastasis. Transcriptomic analysis revealed that Cldn7 knockdown induced smooth muscle actin (SMA)-related genes and a broader mesenchymal phenotype. We validated our results in human cell lines, fresh human tumor tissue, bulk RNA-seq, and public single-cell RNA-seq data. We consistently observed an inverse relationship between Cldn7 expression and expression of SMA-related genes. Furthermore, knockdown and overexpression of SMA-related genes demonstrated that they promote breast cancer invasion. Our data reveal that Cldn7 suppresses breast cancer invasion and metastasis through negative regulation of SMA-related and mesenchymal gene expression.


Asunto(s)
Actinas , Neoplasias de la Mama , Claudinas , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Humanos , Animales , Claudinas/metabolismo , Claudinas/genética , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Actinas/metabolismo , Actinas/genética , Ratones , Línea Celular Tumoral , Metástasis de la Neoplasia , Movimiento Celular/genética
3.
Oncogene ; 43(39): 2927-2937, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39164522

RESUMEN

Metastasis is responsible for the majority of cancer-related fatalities. We previously identified specific cancer cell populations responsible for metastatic events which are cytokeratin-14 (CK14) and E-cadherin positive in luminal tumors, and E-cadherin and vimentin positive in triple-negative tumors. Since cancer cells evolve within a complex ecosystem comprised of immune cells and stromal cells, we sought to decipher the spatial interactions of these aggressive cancer cell populations within the tumor microenvironment (TME). We used imaging mass cytometry to detect 36 proteins in tumor microarrays containing paired primary and metastatic lesions from luminal or triple-negative breast cancers (TNBC), resulting in a dataset of 1,477,337 annotated cells. Focusing on metastasis-initiating cell populations, we observed close proximity to specific fibroblast and macrophage subtypes, a relationship maintained between primary and metastatic tumors. Notably, high CK14 in luminal cancer cells and high vimentin in TNBC cells correlated with close proximity to specific macrophage subtypes (CD163intCD206intPDL1intHLA-DR+ or PDL1highARG1high). Our in-depth spatial analysis demonstrates that metastasis-initiating cancer cells consistently colocalizes with distinct cell populations within the TME, suggesting a role for these cell-cell interactions in promoting metastasis.


Asunto(s)
Macrófagos , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Macrófagos/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Metástasis de la Neoplasia , Línea Celular Tumoral , Vimentina/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo
4.
Cancer Res ; 84(17): 2820-2835, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38959339

RESUMEN

The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.


Asunto(s)
Neoplasias de la Mama , Cadherinas , Progresión de la Enfermedad , Serina , Serina/metabolismo , Cadherinas/metabolismo , Femenino , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Animales , Ratones , Proliferación Celular , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Metástasis de la Neoplasia , Antígenos CD/metabolismo , Movimiento Celular , Estrés Oxidativo , Ratones Desnudos
5.
PLoS Comput Biol ; 20(6): e1012195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935814

RESUMEN

Therapeutic interventions are designed to perturb the function of a biological system. However, there are many types of proteins that cannot be targeted with conventional small molecule drugs. Accordingly, many identified gene-regulatory drivers and downstream effectors are currently undruggable. Drivers and effectors are often connected by druggable signaling and regulatory intermediates. Methods to identify druggable intermediates therefore have general value in expanding the set of targets available for hypothesis-driven validation. Here we identify and prioritize potential druggable intermediates by developing a network perturbation theory, termed NetPert, for response functions of biological networks. Dynamics are defined by a network structure in which vertices represent genes and proteins, and edges represent gene-regulatory interactions and protein-protein interactions. Perturbation theory for network dynamics prioritizes targets that interfere with signaling from driver to response genes. Applications to organoid models for metastatic breast cancer demonstrate the ability of this mathematical framework to identify and prioritize druggable intermediates. While the short-time limit of the perturbation theory resembles betweenness centrality, NetPert is superior in generating target rankings that correlate with previous wet-lab assays and are more robust to incomplete or noisy network data. NetPert also performs better than a related graph diffusion approach. Wet-lab assays demonstrate that drugs for targets identified by NetPert, including targets that are not themselves differentially expressed, are active in suppressing additional metastatic phenotypes.


Asunto(s)
Neoplasias de la Mama , Biología Computacional , Redes Reguladoras de Genes , Humanos , Redes Reguladoras de Genes/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Transducción de Señal/efectos de los fármacos , Modelos Biológicos , Antineoplásicos/farmacología , Femenino
7.
Ann Surg Oncol ; 31(3): 1996-2007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38175427

RESUMEN

BACKGROUND: Select patients with peritoneal metastases are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC). We assayed for intra- and interpatient drug response heterogeneity through testing of patient-derived tumor organoids (PDTOs). METHODS: PDTOs were generated from CRS/HIPEC patients from December 2021 to September 2022 and subjected to an in vitro HIPEC drug screen. Drug response was assessed with a cell viability assay and cleaved caspase-3 staining. RESULTS: A total of 31 patients were consented for tissue collection. Viable tissue was harvested from 23, and PDTO generation was successful in 13 (56%). PDTOs were analyzed from six appendiceal, three colorectal, two small bowel, one gastric, and one adrenal tumor. Drug screen results were generated in as few as 7 days (62%), with an average time of 12 days. Most patients received mitomycin-C (MMC) intraoperatively (n = 9); however, in only three cases was this agent considered the optimal choice in vitro. Three sets of PDTOs were resistant (defined as > 50% PDTO viability) to all agents tested and two were pan-sensitive (defined as 3 or more agents with < 50% PDTO viability). In three patients, organoids were generated from multiple metastatic sites and intrapatient drug response heterogeneity was observed. CONCLUSIONS: Both intra- and interpatient drug response heterogeneity exist in patients undergoing CRS/HIPEC for nongynecologic abdominal cancers. Caution must be used when interpreting patient response to chemotherapeutic agents based on a single site of testing in those with metastatic disease.


Asunto(s)
Neoplasias del Apéndice , Neoplasias Colorrectales , Hipertermia Inducida , Neoplasias Peritoneales , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Colorrectales/patología , Neoplasias del Apéndice/patología , Procedimientos Quirúrgicos de Citorreducción/métodos , Neoplasias Peritoneales/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hipertermia Inducida/métodos , Terapia Combinada , Estudios Retrospectivos , Tasa de Supervivencia
8.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292712

RESUMEN

The loss of E-cadherin (E-cad), an epithelial cell adhesion molecule, has been implicated in the epithelial-mesenchymal transition (EMT), promoting invasion and migration of cancer cells and, consequently, metastasis. However, recent studies have demonstrated that E-cad supports the survival and proliferation of metastatic cancer cells, suggesting that our understanding of E-cad in metastasis is far from comprehensive. Here, we report that E-cad upregulates the de novo serine synthesis pathway (SSP) in breast cancer cells. The SSP provides metabolic precursors for biosynthesis and resistance to oxidative stress, critically beneficial for E-cad-positive breast cancer cells to achieve faster tumor growth and more metastases. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, significantly and specifically hampered the proliferation of E-cad-positive breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. Our findings reveal that E-cad adhesion molecule significantly reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers.

9.
Biomaterials ; 298: 122128, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121102

RESUMEN

Multicellular clustering provides cancer cells with survival advantages and facilitates metastasis. At the tumor migration front, cancer cell clusters are surrounded by an aligned stromal topography. It remains unknown whether aligned stromal topography regulates the resistance of migrating cancer cell clusters to therapeutics. Using a hybrid nanopatterned model to characterize breast cancer cell clusters at the migration front with aligned stromal topography, we demonstrate that topography-induced migrating cancer cell clusters exhibit upregulated cytochrome P450 family 1 (CYP1) drug metabolism and downregulated glycolysis gene signatures, which correlates with unfavorable prognosis. Screening on approved oncology drugs shows that cancer cell clusters on aligned stromal topography are more resistant to diverse chemotherapeutics. Full-dose drug testings further indicate that topography induces drug resistance of hormone receptor-positive breast cancer cell clusters to doxorubicin and tamoxifen and triple-negative breast cancer cell clusters to doxorubicin by activating the aryl hydrocarbon receptor (AhR)/CYP1 pathways. Inhibiting the AhR/CYP1 pathway restores reactive oxygen species-mediated drug sensitivity to migrating cancer cell clusters, suggesting a plausible therapeutic direction for preventing metastatic recurrence.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral
10.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36881486

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) frequently presents with metastasis, but the molecular programs in human PDAC cells that drive invasion are not well understood. Using an experimental pipeline enabling PDAC organoid isolation and collection based on invasive phenotype, we assessed the transcriptomic programs associated with invasion in our organoid model. We identified differentially expressed genes in invasive organoids compared with matched noninvasive organoids from the same patients, and we confirmed that the encoded proteins were enhanced in organoid invasive protrusions. We identified 3 distinct transcriptomic groups in invasive organoids, 2 of which correlated directly with the morphological invasion patterns and were characterized by distinct upregulated pathways. Leveraging publicly available single-cell RNA-sequencing data, we mapped our transcriptomic groups onto human PDAC tissue samples, highlighting differences in the tumor microenvironment between transcriptomic groups and suggesting that non-neoplastic cells in the tumor microenvironment can modulate tumor cell invasion. To further address this possibility, we performed computational ligand-receptor analysis and validated the impact of multiple ligands (TGF-ß1, IL-6, CXCL12, MMP9) on invasion and gene expression in an independent cohort of fresh human PDAC organoids. Our results identify molecular programs driving morphologically defined invasion patterns and highlight the tumor microenvironment as a potential modulator of these programs.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Organoides/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Microambiente Tumoral/genética
11.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36757813

RESUMEN

Metastatic progression of epithelial cancers can be associated with epithelial-mesenchymal transition (EMT) including transcriptional inhibition of E-cadherin (CDH1) expression. Recently, EM plasticity (EMP) and E-cadherin-mediated, cluster-based metastasis and treatment resistance have become more appreciated. However, the mechanisms that maintain E-cadherin expression in this context are less understood. Through studies of inflammatory breast cancer (IBC) and a 3D tumor cell "emboli" culture paradigm, we discovered that cyclooxygenase 2 (COX-2; PTGS2), a target gene of C/EBPδ (CEBPD), or its metabolite prostaglandin E2 (PGE2) promotes protein stability of E-cadherin, ß-catenin, and p120 catenin through inhibition of GSK3ß. The COX-2 inhibitor celecoxib downregulated E-cadherin complex proteins and caused cell death. Coexpression of E-cadherin and COX-2 was seen in breast cancer tissues from patients with poor outcome and, along with inhibitory GSK3ß phosphorylation, in patient-derived xenografts (PDX) including triple negative breast cancer (TNBC).Celecoxib alone decreased E-cadherin protein expression within xenograft tumors, though CDH1 mRNA levels increased, and reduced circulating tumor cell (CTC) clusters. In combination with paclitaxel, celecoxib attenuated or regressed lung metastases. This study has uncovered a mechanism by which metastatic breast cancer cells can maintain E-cadherin-mediated cell-to-cell adhesions and cell survival, suggesting that some patients with COX-2+/E-cadherin+ breast cancer may benefit from targeting of the PGE2 signaling pathway.


Asunto(s)
Dinoprostona , Neoplasias de la Mama Triple Negativas , Humanos , Cadherinas/genética , Cadherinas/metabolismo , Celecoxib/farmacología , Celecoxib/uso terapéutico , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Femenino
12.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602106

RESUMEN

Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-ß signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-ß1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-ß signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-ß1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-ß signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.


Asunto(s)
Glándulas Mamarias Animales , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Morfogénesis , Epitelio/metabolismo , Movimiento Celular , Células Epiteliales/metabolismo
13.
Oncogene ; 42(10): 737-747, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36604566

RESUMEN

Inter-patient and intra-tumoral heterogeneity complicate the identification of predictive biomarkers and effective treatments for basal triple negative breast cancer (b-TNBC). Invasion is the initiating event in metastasis and can occur by both collective and single-cell mechanisms. We cultured primary organoids from a b-TNBC genetically engineered mouse model in 3D collagen gels to characterize their invasive behavior. We observed that organoids from the same tumor presented different phenotypes that we classified as non-invasive, collective and disseminative. To identify molecular regulators driving these invasive phenotypes, we developed a workflow to isolate individual organoids from the collagen gels based on invasive morphology and perform RNA sequencing. We next tested the requirement of differentially regulated genes for invasion using shRNA knock-down. Strikingly, KRAS was required for both collective and disseminative phenotypes. We then performed a drug screen targeting signaling nodes upstream and downstream of KRAS. We found that inhibition of EGFR, MAPK/ERK, or PI3K/AKT signaling reduced invasion. Of these, ERK inhibition was striking for its ability to potently inhibit collective invasion and dissemination. We conclude that different cancer cells in the same b-TNBC tumor can express different metastatic molecular programs and identified KRAS and ERK as essential regulators of collective and single cell dissemination.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas p21(ras) , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Movimiento Celular/genética
14.
Sci Transl Med ; 14(656): eabn7571, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35921474

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype associated with early metastatic recurrence and worse patient outcomes. TNBC tumors express molecular markers of the epithelial-mesenchymal transition (EMT), but its requirement during spontaneous TNBC metastasis in vivo remains incompletely understood. We demonstrated that spontaneous TNBC tumors from a genetically engineered mouse model (GEMM), multiple patient-derived xenografts, and archival patient samples exhibited large populations in vivo of hybrid E/M cells that lead invasion ex vivo while expressing both epithelial and mesenchymal characteristics. The mesenchymal marker vimentin promoted invasion and repressed metastatic outgrowth. We next tested the requirement for five EMT transcription factors and observed distinct patterns of utilization during invasion and colony formation. These differences suggested a sequential activation of multiple EMT molecular programs during the metastatic cascade. Consistent with this model, our longitudinal single-cell RNA analysis detected three different EMT-related molecular patterns. We observed cancer cells progressing from epithelial to hybrid E/M and strongly mesenchymal patterns during invasion and from epithelial to a hybrid E/M pattern during colony formation. We next investigated the relative epithelial versus mesenchymal state of cancer cells in both GEMM and patient metastases. In both contexts, we observed heterogeneity between and within metastases in the same individual. We observed a complex spectrum of epithelial, hybrid E/M, and mesenchymal cell states within metastases, suggesting that there are multiple successful molecular strategies for distant organ colonization. Together, our results demonstrate an important and complex role for EMT programs during TNBC metastasis.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Vimentina
15.
NPJ Breast Cancer ; 8(1): 75, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773258

RESUMEN

Including patient advocates in basic cancer research ensures that breast cancer research is intentional, supports effective communication with broader audiences, and directly connects researchers with those who they are striving to help. Despite this utility, many cancer research scientists do not work with patient advocates. To understand barriers to engagement and build a framework for enhanced interactions in the future, we hosted a workshop with patient advocates and researchers who do engage, then discussed findings at an international metastatic breast cancer conference to solicit additional feedback and suggestions. Findings demonstrate that researchers are uncertain about how to initiate and maintain relationships with advocates. We offer actionable steps to support researchers working with patient advocates to improve cancer research and accomplish our collective goal of improving lives of those who have been diagnosed with breast cancer. We hope that this initiative will facilitate such collaborative efforts.

16.
Methods Mol Biol ; 2463: 235-250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35344179

RESUMEN

Metastasis is a complex process that has been historically difficult to model in culture. Host immune responses play critical roles in restraining and promoting metastatic tumor cells. Here we describe a method of 3D organotypic co-culture of natural killer cells and tumor organoids to capture interactions between the two cellular populations. These assays can be used to model key aspects of metastatic biology and to screen for the effectiveness of agents that stimulate natural killer cell cytotoxicity.


Asunto(s)
Neoplasias , Organoides , Técnicas de Cocultivo , Humanos , Células Asesinas Naturales
17.
J Clin Invest ; 132(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289318

RESUMEN

Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Inmunoterapia , Neoplasias/patología
18.
Clin Cancer Res ; 28(9): 1948-1965, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35135840

RESUMEN

PURPOSE: Although chemotherapies kill most cancer cells, stem cell-enriched survivors seed metastasis, particularly in triple-negative breast cancers (TNBC). TNBCs arise from and are enriched for tumor stem cells. Here, we tested if inhibition of DOT1L, an epigenetic regulator of normal tissue stem/progenitor populations, would target TNBC stem cells. EXPERIMENTAL DESIGN: Effects of DOT1L inhibition by EPZ-5676 on stem cell properties were tested in three TNBC lines and four patient-derived xenograft (PDX) models and in isolated cancer stem cell (CSC)-enriched ALDH1+ and ALDH1- populations. RNA sequencing compared DOT1L regulated pathways in ALDH1+ and ALDH1- cells. To test if EPZ-5676 decreases CSC in vivo, limiting dilution assays of EPZ-5676/vehicle pretreated ALDH1+ and ALDH1- cells were performed. Tumor latency, growth, and metastasis were evaluated. Antitumor activity was also tested in TNBC PDX and PDX-derived organoids. RESULTS: ALDH1+ TNBC cells exhibit higher DOT1L and H3K79me2 than ALDH1-. DOT1L maintains MYC expression and self-renewal in ALDH1+ cells. Global profiling revealed that DOT1L governs oxidative phosphorylation, cMyc targets, DNA damage response, and WNT activation in ALDH1+ but not in ALDH1- cells. EPZ-5676 reduced tumorspheres and ALDH1+ cells in vitro and decreased tumor-initiating stem cells and metastasis in xenografts generated from ALDH1+ but not ALDH1- populations in vivo. EPZ-5676 significantly reduced growth in vivo of one of two TNBC PDX tested and decreased clonogenic 3D growth of two other PDX-derived organoid cultures. CONCLUSIONS: DOT1L emerges as a key CSC regulator in TNBC. Present data support further clinical investigation of DOT1L inhibitors to target stem cell-enriched TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Familia de Aldehído Deshidrogenasa 1 , Línea Celular Tumoral , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Am J Pathol ; 191(11): 2023-2038, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400131

RESUMEN

Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-induced, phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cells were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, in vitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation in vitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.


Asunto(s)
Melanoma/patología , Neovascularización Patológica/patología , Neoplasias Cutáneas/patología , Anciano , Anciano de 80 o más Años , Animales , Femenino , Xenoinjertos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/metabolismo , Ratones , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
20.
Biomaterials ; 275: 120922, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126408

RESUMEN

Prior to cancer cell invasion, the structure of the extracellular matrix (ECM) surrounding the tumor is remodeled, such that circumferentially oriented matrix fibers become radially aligned. This predisposed radially aligned matrix structure serves as a critical regulator of cancer invasion. However, a biomimetic 3D model recapitulating a tumor's behavioral response to these ECM structures is not yet available. In this study, we have developed a phase-specific, force-guided method to establish a 3D dual topographical tumor model in which each tumor spheroid/organoid is surrounded by radially aligned collagen I fibers on one side and circumferentially oriented fibers on the opposite side. A coaxial rotating cylinder system was employed to construct the dual fiber topography and to pre-seed tumor spheroids/organoids within a single device. This system enables the application of different force mechanisms in the nucleation and elongation phases of collagen fiber polymerization to guide fiber alignment. In the nucleation phase, fiber alignment is enhanced by a horizontal laminar Couette flow driven by the inner cylinder rotation. In the elongation phase, fiber growth is guided by a vertical gravitational force to form a large aligned collagen matrix gel (35 × 25 × 0.5 mm) embedded with >1000 tumor spheroids. The fibers above each tumor spheroid are radially aligned along the direction of gravitational force in contrast to the circumferentially oriented fibers beneath each tumor spheroid/organoid, where the presence of the tumor interferes with the gravity-induced fiber alignment. After tumor invasion, there are more disseminated multicellular clusters on the radially aligned side, compared to the side of the tumor spheroid/organoid facing circumferentially oriented fibers. These results indicate that our 3D dual topographical model recapitulates the preference of tumors to invade and disseminate along radially aligned fibers. We anticipate that this 3D dual topographical model will have broad utility to those studying collective tumor invasion and that it has the potential to identify cancer invasion-targeted therapeutic agents.


Asunto(s)
Matriz Extracelular , Neoplasias , Colágeno , Colágeno Tipo I , Fenómenos Mecánicos , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...