Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 144(1): 73-83.e10, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543242

RESUMEN

The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.


Asunto(s)
Células Epidérmicas , Epidermis , Humanos , Adulto , Epidermis/metabolismo , Queratinocitos/metabolismo , Homeostasis , Inflamación/genética , Inflamación/metabolismo
3.
Cell Death Dis ; 12(6): 525, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34023861

RESUMEN

While pregnancy is known to reduce a woman's life-long risk of breast cancer, clinical data suggest that it can specifically promote HER2 (human EGF receptor 2)-positive breast cancer subtype (HER2+ BC). HER2+ BC, characterized by amplification of HER2, comprises about 20% of all sporadic breast cancers and is more aggressive than hormone receptor-positive breast cancer (the majority of cases). Consistently with human data, pregnancy strongly promotes HER2+ BC in genetic mouse models. One proposed mechanism of this is post-pregnancy accumulation of PIMECs (pregnancy-identified mammary epithelial cells), tumor-initiating cells for HER2+ BC in mice. We previously showed that p63, a homologue of the tumor suppressor p53, is required to maintain the post-pregnancy number of PIMECs and thereby promotes HER2+ BC. Here we set to test whether p63 also affects the intrinsic tumorigenic properties of PIMECs. To this end, we FACS-sorted YFP-labeled PIMECs from p63+/-;ErbB2 and control p63+/+;ErbB2 females and injected their equal amounts into immunodeficient recipients. To our surprise, p63+/- PIMECs showed increased, rather than decreased, tumorigenic capacity in vivo, i.e., significantly accelerated tumor onset and tumor growth, as well as increased self-renewal in mammosphere assays and proliferation in vitro and in vivo. The underlying mechanism of these phenotypes seems to be a specific reduction of the tumor suppressor TAp63 isoform in p63+/- luminal cells, including PIMECs, with concomitant aberrant upregulation of the oncogenic ΔNp63 isoform, as determined by qRT-PCR and scRNA-seq analyses. In addition, scRNA-seq revealed upregulation of several cancer-associated (Il-4/Il-13, Hsf1/HSP), oncogenic (TGFß, NGF, FGF, MAPK) and self-renewal (Wnt, Notch) pathways in p63+/-;ErbB2 luminal cells and PIMECs per se. Altogether, these data reveal a complex role of p63 in PIMECs and pregnancy-associated HER2+ BC: maintaining the amount of PIMECs while suppressing their intrinsic tumorigenic capacity.


Asunto(s)
Neoplasias de la Mama/patología , Células Madre Neoplásicas/fisiología , Embarazo/fisiología , Transactivadores/fisiología , Animales , Mama/patología , Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Epiteliales/patología , Células Epiteliales/fisiología , Femenino , Genes erbB-2 , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Células Madre Neoplásicas/patología , Transactivadores/genética
4.
Cell Death Dis ; 12(1): 126, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500390

RESUMEN

Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/uso terapéutico , Triazoles/uso terapéutico , Animales , Neoplasias de la Mama/patología , Femenino , Proteínas HSP90 de Choque Térmico/farmacología , Humanos , Ratones , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA