Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Chem Res ; 31(2): 274-283, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35340752

RESUMEN

Compound 1c, 5-chloro-2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compounds 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity (Ki = 1.2 nM) than the (+)2 or 2b enantiomer (Ki = 93 nM) and a ß-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed about 8 times less activity than 5-HT in the Gs pathway, it showed over 31 times higher activity than 5-HT in the ß-arrestin pathway. This constitutes a significant ß-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published ß-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).

2.
Bioorg Med Chem ; 30: 115943, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33338898

RESUMEN

Dopamine (DA) and serotonin (5-HT) receptors are prime targets for the development of antipsychotics. The specific role of each receptor subtype to the pharmacological effects of antipsychotic drugs remains unclear. Understanding the relationship between antipsychotic drugs and their binding affinities at DA and 5-HT receptor subtypes is very important for antipsychotic drug discovery and could lead to new drugs with enhanced efficacies. We have previously disclosed SYA16263 (5) as an interesting compound with moderate radioligand binding affinity at the D2 & D3 receptors (Ki = 124 nM & 86 nM respectively) and high binding affinities towards D4 and 5-HT1A receptors (Ki = 3.5 nM & 1.1 nM respectively). Furthermore, we have demonstrated SYA16263 (5) is functionally selective and produces antipsychotic-like behavior but without inducing catalepsy in rats. Based on its pharmacological profile, we selected SYA16263 (5) to study its structure-affinity relationship with a view to obtaining new analogs that display receptor subtype selectivity. In this study, we present the synthesis of structurally modified SYA16263 (5) analogs and their receptor binding affinities at the DA and 5-HT receptor subtypes associated with antipsychotic action. Furthermore, we have identified compound 21 with no significant binding affinity at the D2 receptor subtype but with moderate binding affinity at the D3 and D4 receptors subtypes. However, because 21 is able to demonstrate antipsychotic-like activity in a preliminary test, using the reversal of apomorphine-induced climbing behavior experiment in mice with SYA16263 and haloperidol as positive controls, we question the essential need of the D2 receptor subtype in reversing apomorphine-induced climbing behavior.


Asunto(s)
Antipsicóticos/farmacología , Apomorfina/antagonistas & inhibidores , Conducta Animal/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Receptores de Dopamina D2/metabolismo , Animales , Antipsicóticos/síntesis química , Antipsicóticos/química , Apomorfina/farmacología , Antagonistas de los Receptores de Dopamina D2/síntesis química , Antagonistas de los Receptores de Dopamina D2/química , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
3.
J Biochem Mol Toxicol ; 35(2): e22651, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33085988

RESUMEN

We herein report the biological evaluation of 3-arylcoumarin derivatives (3a-l) as potential human monoamine oxidase-A and -B (hMAO-A and hMAO-B) inhibitors. The result indicated that 7,8-dihydroxy-3-(4-nitrophenyl)coumarin (3j) was most effective against MAO-A (inhibition concentration [IC50 ] = 6.46 ± 0.02 µM) and MAO-B (IC50 = 3.8 ± 0.3 µM) enzymes than other synthesized compounds and reference compounds (pargyline and moclobemide). Furthermore, compound (3j) showed (a) nonselectivity against hMAO enzymes, (b) reversible hMAO enzymes inhibition, and (c) neuroprotection against H2 O2 -treated human neuroblastoma (N2a) cells. Finally, a molecular modeling study revealed that the hMAO enzymes inhibitory activity of the compound (3j) may be due to the orientation where the nitro (NO2 ) group lies deep into the receptor and the phenyl ring directed toward flavin adenosine dinucleotide via hydrogen bond interaction, and possible π-π interaction with various important residues. Thus, the results of the present study demonstrate that compound (3j) can be considered as a promising scaffold for the development of hMAO-A and hMAO-B inhibitors.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
4.
Molecules ; 25(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403270

RESUMEN

Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02-16 µM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 µM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions-between the KKR molecule and MAO-A amino acid residues-to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups-such as chlorine and hydroxyl groups-are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Depresión/tratamiento farmacológico , Flavonoides/química , Flavonoides/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Neoplasias de la Próstata/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Depresión/enzimología , Depresión/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Cinética , Masculino , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/psicología , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 27(11): 2350-2356, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28442256

RESUMEN

Flavonoids, stilbenes, and chalcones are plant secondary metabolites that often possess diverse biological activities including anti-inflammatory, anti-cancer, and anti-viral activities. The wide range of bioactivities poses a challenge to identify their targets. Here, we studied a set of synthetically generated flavonoids and chalcones to evaluate for their biological activity, and compared similarly substituted flavonoids and chalcones. Substituted chalcones, but not flavonoids, showed inhibition of viral translation without significantly affecting viral replication in cells infected with hepatitis C virus (HCV). We suggest that the chalcones used in this study inhibit mammalian target of rapamycin (mTOR) pathway by ablating phosphorylation of ribosomal protein 6 (rps6), and also the kinase necessary for phosphorylating rps6 in Huh7.5 cells (pS6K1). In addition, selected chalcones showed inhibition of growth in Ishikawa, MCF7, and MDA-MB-231 cells resulting an IC50 of 1-6µg/mL. When similarly substituted flavonoids were used against the same set of cancer cells, we did not observe any inhibitory effect. Together, we report that chalcones show potential for anti-viral and anti-cancer activities compared to similarly substituted flavonoids.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Chalconas/farmacología , Flavonoides/farmacología , Animales , Antineoplásicos/química , Antivirales/química , Línea Celular Tumoral , Chalconas/química , Flavonoides/química , Humanos , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 24(16): 3671-9, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27364609

RESUMEN

Several known D2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing.


Asunto(s)
Receptores de Dopamina D2/metabolismo , Animales , Dopaminérgicos/metabolismo , Humanos , Ligandos , Espectroscopía de Protones por Resonancia Magnética
7.
Artículo en Inglés | MEDLINE | ID: mdl-26557867

RESUMEN

Monoamine oxidase B inhibitors (MAO-BIs) are used in the early management of Parkinson's disease (PD). Long-term suspected side effects of MAO-B classical inhibitors established the need for safer alternative therapeutic agents. In our study, the flavanone bavachinin (BNN) and its analog bavachin (BVN) found in the seeds of Psoralea corylifolia L. ethanolic extract (PCSEE) were investigated for their human MAO-A and MAO-B (hMAO-A and hMAO-B) inhibition. Both PCSEE and BNN effectively reduced hMAO-B activity more than hMAO-A while BVN had activating effects. BNN showed selective hMAO-B inhibition (IC50 ~ 8.82 µM) more than hMAO-A (IC502009;~ 189.28 µM). BNN in the crude extract was determined by HPLC, also validated by TLC showing a yield of 0.21% PCSEE dry weight. BNN competitively inhibited hMAO-A and hMAO-B, with a lower hMAO-B K i than hMAO-A K i by 10.33-fold, and reduced hMAO-B K m /V max efficiency ratio to be comparable to the standard selegiline. Molecular docking examination of BNN and BVN predicted an indirect role of BNN C7-methoxy group for its higher affinity, selectivity, and reversibility as an MAO-BI. These findings suggest that BNN, which is known to be a potent PPAR-γ agonist, is a selective and competitive hMAO-B inhibitor and could be used in the management of PD.

8.
Bioorg Med Chem ; 22(12): 3105-14, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24800940

RESUMEN

The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4=0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4=3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted.


Asunto(s)
Acrilamidas/farmacología , Antagonistas de Dopamina/farmacología , Indoles/farmacología , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D4/metabolismo , Acrilamidas/síntesis química , Animales , Unión Competitiva , Células CHO , Cricetinae , Cricetulus , Antagonistas de Dopamina/síntesis química , Humanos , Indoles/síntesis química , Ligandos , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Relación Estructura-Actividad
9.
Eur J Med Chem ; 53: 124-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22520153

RESUMEN

The synthesis and evaluation of several benzothiazole-based compounds are described in an attempt to identify novel dual-acting 5HT(1A) receptor and SERT inhibitors as new antidepressants. Binding affinities at the 5HT(1A) receptor and the serotonin transporter do not appear to be congruent and other areas of the binding sites would need to be explored in order to improve binding simultaneously at both sites. Compounds 20 and 23 show moderate binding affinity at the 5HT(1A) receptor and the SERT site and thus, have the potential to be further explored as dual-acting agents. In addition, compound 20 binds with low affinity to the dopamine transporter (DAT), the norepinephrine transporter (NET) and 5HT(2C) receptor, which are desirable properties as selectivity for SERT (and not DAT or NET) is associated with an absence of cardiovascular side effects.


Asunto(s)
Antidepresivos/metabolismo , Antidepresivos/farmacología , Benzotiazoles/metabolismo , Benzotiazoles/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Antidepresivos/síntesis química , Antidepresivos/química , Benzotiazoles/síntesis química , Benzotiazoles/química , Diseño de Fármacos , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Bioorg Med Chem ; 20(5): 1671-8, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22336245

RESUMEN

Structure-activity relationship studies on 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one (SYA 013), a homopiperazine analog of haloperidol has resulted in an understanding of the effect of structural modifications on binding affinity at dopamine and serotonin receptor subtypes. Further exploration, using bioisosteric replacement strategies has led to the identification of several new agents including compounds 7, 8, 11 and 12 which satisfy the initial criteria for further exploration as new antipsychotic agents. In addition, compound 18, a D(3) selective tropanol, has been identified as having the potential for further optimization into a useful drug which may combat neuropsychiatric diseases.


Asunto(s)
Azepinas/química , Azepinas/farmacología , Haloperidol/análogos & derivados , Antipsicóticos/síntesis química , Antipsicóticos/química , Antipsicóticos/farmacología , Azepinas/síntesis química , Haloperidol/síntesis química , Haloperidol/química , Haloperidol/farmacología , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 20(3): 1291-7, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22245230

RESUMEN

Using haloperidol as a scaffold, new agents were designed to investigate the structural contributions of various groups to binding at CNS receptors associated with atypical antipsychotic pharmacology. It is clear that each pharmacophoric group, the butyrophenone, the piperidine and the 4-chlorophenyl moieties contributes to changes in binding to the receptors of interest. This strategy has resulted in the identification of several new agents, compounds 16, 18, 19, 23, 24 and 25, with binding profiles which satisfy our stated criteria for agents to act as potential atypical antipsychotics. This research demonstrates that haloperidol can serve as a useful lead in the identification and design of new agents that target multiple receptors associated with antipsychotic pharmacology.


Asunto(s)
Antipsicóticos/química , Antipsicóticos/farmacología , Diseño de Fármacos , Haloperidol/química , Haloperidol/farmacología , Butirofenonas/química , Butirofenonas/farmacología , Humanos , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo
12.
Bioorg Med Chem ; 19(1): 458-70, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21134759

RESUMEN

Substitution around 5-methyl benzothieno[3,2-b]quinolinium (2) ring system was explored in order to identify positions of substitution that could improve its antifungal profile. The 3-methoxy (10b) was active against C. albicans, C. neoformans, and A. fumigatus and the 4-chloro (10f) analog showed moderate increases in anti-cryptococcal and anti-aspergillus activities. The effectiveness of 10b and 10f were validated in murine models of candidiasis and cryptococcosis, respectively. The efficacy of 10f in reducing brain cryptococcal infection and its observation in the brain of mice injected with this quaternary compound confirm the capacity of these compounds to cross the blood-brain barrier of mice. Overall, several of the chloro and methoxy substituted compounds showed significant improvements in activity against A. fumigatus, the fungal pathogen prevalent in patients receiving organ transplant. Opening the benzothiophene ring of 2 to form 1-(5-cyclohexylpentyl)-3-(phenylthio)quinolinium compound (3) resulted in the identification of several novel compounds with over 50-fold increases in potency (cf. 2) while retaining low cytotoxicities. Thus, compound 3 constitutes a new scaffold for development of drugs against opportunistic infections.


Asunto(s)
Hongos/efectos de los fármacos , Quinolinas/síntesis química , Quinolinas/farmacología , Animales , Barrera Hematoencefálica , Candidiasis/tratamiento farmacológico , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Dosis Máxima Tolerada , Ratones , Pruebas de Sensibilidad Microbiana , Quinolinas/farmacocinética , Quinolinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...