Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1322223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689848

RESUMEN

During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.

2.
PLoS Genet ; 19(5): e1010775, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37205638

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008873.].

3.
PLoS Genet ; 16(6): e1008873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584819

RESUMEN

The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response.


Asunto(s)
Antiportadores/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Aumento de la Célula , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Tamaño de los Órganos/genética , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/genética
4.
Ann Bot ; 125(3): 521-532, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31768517

RESUMEN

BACKGROUND AND AIMS: Domatia are plant structures within which organisms reside. Callicarpa saccata (Lamiaceae) is the sole myrmecophyte, or 'ant plant', that develops foliar (leaf-borne) myrmeco-domatia in this genus. In this work we examined domatium development in C. saccata to understand the developmental processes behind pouch-like domatia. METHODS: Scanning electron microscopy, sectioning and microcomputed tomography were carried out to compare the leaves of C. saccata with those of the closely related but domatia-less myrmecophyte Callicarpa subaequalis, both under cultivation without ants. KEY RESULTS: Callicarpa saccata domatia are formed as a result of excess cell proliferation at the blade/petiole junctions of leaf primordia. Blade/petiole junctions are important meristematic sites in simple leaf organogenesis. We also found that the mesophyll tissue of domatia does not clearly differentiate into palisade and spongy layers. CONCLUSIONS: Rather than curling of the leaf margins, a perturbation of the normal functioning of the blade/petiole junction results in the formation of domatium tissue. Excess cell proliferation warps the shape of the blade and disturbs the development of the proximal-distal axis. This process leads to the generation of distinct structures that facilitate interaction between C. saccata and ants.


Asunto(s)
Hormigas , Callicarpa , Animales , Hojas de la Planta , Simbiosis , Microtomografía por Rayos X
5.
Mol Genet Genomics ; 294(4): 1085-1093, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30968247

RESUMEN

Thermus thermophilus (T. thermophilus) HB27 is an extreme thermophile that grows optimally at 65-72 °C. Heat-induced DNA lesions are expected to occur at a higher frequency in the genome of T. thermophilus than in those of mesophiles; however, the mechanisms underlying the maintenance of genome integrity at high temperatures remain poorly understood. The study of mutation spectra has become a powerful approach to understanding the molecular mechanisms responsible for DNA repair and mutagenesis in mesophilic species. Therefore, we developed a supF-based system to detect a broad spectrum of mutations in T. thermophilus. This system was validated by measuring spontaneous mutations in the wild type and a udgA, B double mutant deficient in uracil-DNA glycosylase (UDG) activity. We found that the mutation frequency of the udgA, B strain was 4.7-fold higher than that of the wild type and G:C→A:T transitions dominated, which was the most reasonable for the mutator phenotype associated with the loss of UDG function in T. thermophilus. These results show that this system allowed for the rapid analysis of mutations in T. thermophilus, and may be useful for studying the molecular mechanisms responsible for DNA repair and mutagenesis in this extreme thermophile.


Asunto(s)
Análisis Mutacional de ADN/métodos , Thermus thermophilus/genética , Uracil-ADN Glicosidasa/genética , Proteínas Bacterianas/genética , Calor , Mutación , Tasa de Mutación , Thermus thermophilus/crecimiento & desarrollo
6.
J Plant Res ; 129(4): 591-601, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27059754

RESUMEN

A tropical small tree, Callicarpa saccata, is known to have a symbiotic relationship with ants. It has sac-like structures at the base of the leaves that are inhabited by ants. No other species has been determined to be a myrmecophyte among the ca. 140 species of this genus. However, our recent field investigation discovered that two other species on Borneo (C. barbata and C. teneriflora) have hollow stems, which seem to be inhabited by ants. We observed the morphological features of these species in relation to their usage by ants, and became convinced that they are mymecophytic species. The molecular phylogenetic analyses using ITS and chloroplast regions suggest that C. saccata and C. teneriflora are closely related, but the differences in the myrmecophytic features of these species should be noted.


Asunto(s)
Hormigas/fisiología , Lamiaceae/anatomía & histología , Lamiaceae/fisiología , Filogenia , Animales , Secuencia de Bases , Teorema de Bayes , Borneo , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA