Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2304378120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428913

RESUMEN

ToxR, a Vibrio cholerae transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in V. cholerae, here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the toxT and ompU promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.


Asunto(s)
Vibrio cholerae , Vibrio cholerae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Virulencia , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Antiviral Res ; 208: 105458, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336176

RESUMEN

Severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) pose a threat to global public health. The 3C-like main protease (Mpro), which presents structural similarity with the active site domain of enterovirus 3C protease, is one of the best-characterized drug targets of these viruses. Here we studied the antiviral activity of the orally bioavailable enterovirus protease inhibitor AG7404 against SARS-CoV-1 and SARS-CoV-2 from a structural, biochemical, and cellular perspective, comparing it with the related molecule rupintrivir (AG7800). Crystallographic structures of AG7404 in complex with SARS-CoV-1 Mpro and SARS-CoV-2 Mpro and of rupintrivir in complex with SARS-CoV-2 Mpro were solved, revealing that all protein residues interacting with the inhibitors are conserved between the two proteins. A detailed analysis of protein-inhibitor interactions indicates that AG7404 has a better fit to the active site of the target protease than rupintrivir. This observation was further confirmed by biochemical FRET assays showing IC50 values of 47 µM and 101 µM for AG7404 and rupintrivir, respectively, in the case of SARS-CoV-2 Mpro. Equivalent IC50 values for SARS-CoV-1 also revealed greater inhibitory capacity of AG7404, with a value of 29 µM vs. 66 µM for rupintrivir. Finally, the antiviral activity of the two inhibitors against SARS-CoV-2 was confirmed in a human cell culture model of SARS-CoV-2 infection, although rupintrivir showed a higher potency and selectivity index in this assay.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Antivirales/química , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
3.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 11-18, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404521

RESUMEN

Medium-resolution cryo-electron microscopy maps, in particular when they include a significant number of α-helices, may allow the building of partial models that are useful for molecular-replacement searches in large crystallographic structures when the structures of homologs are not available and experimental phasing has failed. Here, as an example, the solution of the structure of a bacteriophage portal using a partial 30% model built into a 7.8 Šresolution cryo-EM map is shown. Inspection of the self-rotation function allowed the correct oligomerization state to be determined, and density-modification procedures using rotation matrices and a mask based on the cryo-EM structure were critical for solving the structure. A workflow is described that may be applicable to similar cases and this strategy is compared with direct use of the cryo-EM map for molecular replacement.


Asunto(s)
Bacteriófago T7/metabolismo , Proteínas de la Cápside/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Programas Informáticos
4.
Nat Commun ; 10(1): 3891, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467275

RESUMEN

Herpesviridae is a vast family of enveloped DNA viruses that includes eight distinct human pathogens, responsible for diseases that range from almost asymptomatic to severe and life-threatening. Epstein-Barr virus infects B-cells and epithelial cells, causing infectious mononucleosis, as well as a number of cancers. Epstein-Barr infection cannot be cured since neither vaccine nor antiviral drug treatments are available. All herpesviruses contain a linear double-stranded DNA genome, enclosed within an icosahedral capsid. Viral portal protein plays a key role in the procapsid assembly and DNA packaging. The portal is the entrance and exit pore for the viral genome, making it an attractive pharmacological target for the development of new antivirals. Here we present the atomic structure of the portal protein of Epstein-Barr virus, solved by cryo-electron microscopy at 3.5 Å resolution. The detailed architecture of this protein suggests that it plays a functional role in DNA retention during packaging.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Herpesvirus Humano 4/ultraestructura , Proteínas Virales/ultraestructura , Ensamble de Virus , Cápside/ultraestructura , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Empaquetamiento del ADN , ADN Viral/genética , Genoma Viral , Herpesvirus Humano 4/genética , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/ultraestructura , Proteínas Virales/genética , Virión/ultraestructura
5.
Nat Commun ; 10(1): 3746, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431626

RESUMEN

Double-stranded DNA bacteriophages package their genome at high pressure inside a procapsid through the portal, an oligomeric ring protein located at a unique capsid vertex. Once the DNA has been packaged, the tail components assemble on the portal to render the mature infective virion. The tail tightly seals the ejection conduit until infection, when its interaction with the host membrane triggers the opening of the channel and the viral genome is delivered to the host cell. Using high-resolution cryo-electron microscopy and X-ray crystallography, here we describe various structures of the T7 bacteriophage portal and fiber-less tail complex, which suggest a possible mechanism for DNA retention and ejection: a portal closed conformation temporarily retains the genome before the tail is assembled, whereas an open portal is found in the tail. Moreover, a fold including a seven-bladed ß-propeller domain is described for the nozzle tail protein.


Asunto(s)
Bacteriófago T7/fisiología , Proteínas de la Cápside/ultraestructura , Cápside/ultraestructura , Empaquetamiento del ADN , Modelos Moleculares , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Viral/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA