Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762554

RESUMEN

Chronic periodontitis is a bacterial infection associated with dentally adherent biofilm (plaque) accumulation and age-related comorbidities. The disease begins as an inflammatory exudate from gingival margins, gingival crevicular fluid (GCF) in response to biofilm lysine. After a week of experimental gingivitis (no oral hygiene), biofilm lysine concentration was linearly related to biofilm accumulation (plaque index) but to GCF as an arch-shaped double curve which separated 9 strong from 6 weak GCF responders (hosts). Host DNA was examined for single nucleotide polymorphisms (SNPs) of alleles reported in 7 periodontitis-associated genes. Across all 15 hosts, an adenine SNP (A) at IL1B-511 (rs16944), was significant for strong GCF (Fisher's exact test, p < 0.05), and a thymidine SNP (T) at IL1B+3954 (rs1143634) for weak GCF provided 2 hosts possessing IL6-1363(T), rs2069827, were included. The phenotype of IL1B+3954(T) was converted from weak to strong in one host, and of the non-T allele from strong to weak in the other (specific epistasis, Fisher's exact test, p < 0.01). Together with homozygous alternate or reference SNPs at IL10-1082 or CD14-260 in 4 hosts, all hosts were identified as strong or weak GCF responders. The GCF response is therefore a strong or weak genetic trait that indicates strong or weak innate immunity in EG and controllable or uncontrollable periodontal disease, dental implant survival and late-life comorbidities.

2.
Cell Reprogram ; 25(1): 32-44, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36719998

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. In vitro expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for in vitro neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation in vitro and even for direct reprogramming.


Asunto(s)
Pulpa Dental , Células Madre Mesenquimatosas , Humanos , Células Madre , Diferenciación Celular/fisiología , Neurogénesis , Células Cultivadas
3.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564184

RESUMEN

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Asunto(s)
Hormonas Hipotalámicas , Privación de Sueño , Ratas , Masculino , Humanos , Animales , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/metabolismo , Privación de Sueño/metabolismo , Trastornos del Humor/etiología , Calidad de Vida , Ratas Wistar , Hormonas Hipotalámicas/metabolismo , Sueño/fisiología , Neuronas/fisiología , Norepinefrina/metabolismo
4.
Gels ; 8(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35200447

RESUMEN

Several types of promising cell-based therapies for tissue regeneration have been developing worldwide. However, for successful therapeutical application of cells in this field, appropriate scaffolds are also required. Recently, the research for suitable scaffolds has been focusing on polymer hydrogels due to their similarity to the extracellular matrix. The main limitation regarding amino acid-based hydrogels is their difficult and expensive preparation, which can be avoided by using poly(aspartamide) (PASP)-based hydrogels. PASP-based materials can be chemically modified with various bioactive molecules for the final application purpose. In this study, dopamine containing PASP-based scaffolds is investigated, since dopamine influences several cell biological processes, such as adhesion, migration, proliferation, and differentiation, according to the literature. Periodontal ligament cells (PDLCs) of neuroectodermal origin and SH-SY5Y neuroblastoma cell line were used for the in vitro experiments. The chemical structure of the polymers and hydrogels was proved by 1H-NMR and FTIR spectroscopy. Scanning electron microscopical (SEM) images confirmed the suitable pore size range of the hydrogels for cell migration. Cell viability assay was carried out according to a standardized protocol using the WST-1 reagent. To visualize three-dimensional cell distribution in the hydrogel matrix, two-photon microscopy was used. According to our results, dopamine containing PASP gels can facilitate vertical cell penetration from the top of the hydrogel in the depth of around 4 cell layers (~150 µm). To quantify these observations, a detailed image analysis process was developed and firstly introduced in this paper.

5.
Polymers (Basel) ; 13(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833250

RESUMEN

Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system. Human DPSCs were cultured on these microcarriers in 96-well plates, and further expanded in shake flasks for upscaling experiments. Cell viability was measured using the alamarBlue assay, while cell morphology was observed by conventional and two-photon microscopies. Glucose consumption of cells was detected by the glucose oxidase/Clark-electrode method. DPSCs adhered to and grew well on both microcarrier surfaces and were also found in the pores of the Cytopore 2. Cells grown in tissue culture plates (static, non-shaking conditions) yielded 7 × 105 cells/well. In shake flasks, static preincubation promoted cell adhesion to the microcarriers. Under dynamic culture conditions (shaking) 3 × 107 cells were obtained in shake flasks. The DPSCs exhausted their glucose supply from the medium by day seven even with partial batch-feeding. In conclusion, both non-porous and porous microcarriers are suitable for upscaling ectomesenchymal DPSCs under dynamic culture conditions.

6.
Front Pharmacol ; 12: 682654, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149428

RESUMEN

Background: Amelogenesis, the formation of dental enamel, is well understood at the histomorphological level but the underlying molecular mechanisms are poorly characterized. Ameloblasts secrete enamel matrix proteins and Ca2+, and also regulate extracellular pH as the formation of hydroxyapatite crystals generates large quantities of protons. Genetic or environmental impairment of transport and regulatory processes (e.g. dental fluorosis) leads to the development of enamel defects such as hypomineralization. Aims: Our aims were to optimize the culture conditions for the three-dimensional growth of ameloblast-derived HAT-7 cells and to test the effects of fluoride exposure on HAT-7 spheroid formation. Methods: To generate 3D HAT-7 structures, cells were dispersed and plated within a Matrigel extracellular matrix scaffold and incubated in three different culture media. Spheroid formation was then monitored over a two-week period. Ion transporter and tight-junction protein expression was investigated by RT-qPCR. Intracellular Ca2+ and pH changes were measured by microfluorometry using the fluorescent dyes fura-2 and BCECF. Results: A combination of Hepato-STIM epithelial cell differentiation medium and Matrigel induced the expansion and formation of 3D HAT-7 spheroids. The cells retained their epithelial cell morphology and continued to express both ameloblast-specific and ion transport-specific marker genes. Furthermore, like two-dimensional HAT-7 monolayers, the HAT-7 spheroids were able to regulate their intracellular pH and to show intracellular calcium responses to extracellular stimulation. Finally, we demonstrated that HAT-7 spheroids may serve as a disease model for studying the effects of fluoride exposure during amelogenesis. Conclusion: In conclusion, HAT-7 cells cultivated within a Matrigel extracellular matrix form three-dimensional, multi-cellular, spheroidal structures that retain their functional capacity for pH regulation and intracellular Ca2+ signaling. This new 3D model will allow us to gain a better understanding of the molecular mechanisms involved in amelogenesis, not only in health but also in disorders of enamel formation, such as those resulting from fluoride exposure.

7.
Biochem Pharmacol ; 190: 114590, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33940029

RESUMEN

It has been proposed that changes in microbiota due to nonsteroidal anti-inflammatory drugs (NSAIDs) alter the composition of bile, and elevation of hydrophobic secondary bile acids contributes to small intestinal damage. However, little is known about the effect of NSAIDs on small intestinal bile acids, and whether bile alterations correlate with mucosal injury and dysbiosis. Here we determined the ileal bile acid metabolome and microbiota 24, 48 and 72 h after indomethacin treatment, and their correlation with each other and with tissue damage in rats. In parallel with the development of inflammation, indomethacin increased the ileal proportion of glycine and taurine conjugated bile acids, but not bile hydrophobicity. Firmicutes decreased with time, whereas Gammaproteobacteria increased first, but declined later and were partially replaced by Bilophila, Bacteroides and Fusobacterium. Mucosal injury correlated negatively with unconjugated bile acids and Gram-positive bacteria, and positively with taurine conjugates and some Gram-negative taxa. Strong positive correlation was found between Lactobacillaceae, Ruminococcaceae, Clostridiaceae and unconjugated bile acids. Indomethacin-induced dysbiosis was not likely due to direct antibacterial effects or alterations in luminal pH. Here we provide the first detailed characterization of indomethacin-induced time-dependent alterations in small intestinal bile acid composition, and their associations with mucosal injury and dysbiosis. Our results suggest that increased bile hydrophobicity is not likely to contribute to indomethacin-induced small intestinal damage.


Asunto(s)
Antiinflamatorios no Esteroideos/toxicidad , Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Indometacina/toxicidad , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Animales , Disbiosis/inducido químicamente , Disbiosis/microbiología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/microbiología , Intestino Delgado/microbiología , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
8.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924361

RESUMEN

TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.


Asunto(s)
Ameloblastos/metabolismo , Calcio/metabolismo , Canales Catiónicos TRPM/metabolismo , Ameloblastos/citología , Ameloblastos/efectos de los fármacos , Anilidas/farmacología , Animales , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Incisivo/citología , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Mibefradil/farmacología , Ratones , Modelos Biológicos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Ratas , Tiadiazoles/farmacología
9.
Arch Oral Biol ; 122: 104995, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33278647

RESUMEN

OBJECTIVE: Although the osteogenic differentiation potential of mesenchymal stem cells of dental origin is well established, the roles of different marker proteins in this process remain to be clarified. Our aim was to compare the cellular and molecular changes, focusing in particular on mesenchymal stem cell markers, during in vitro osteogenesis in three dental stem cell types: dental follicle stem cells (DFSCs), periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs). DESIGN: Human DFSCs, PDLSCs and DPSCs were isolated, cultured and their osteogenic differentiation was induced for 3 weeks. Mineralization was assessed by von Kossa staining and calcium concentration measurements. The expression of mesenchymal and osteogenic markers was studied by immunocytochemistry and qPCR techniques. Alkaline phosphatase (ALP) activity and the frequency of STRO-1 positive cells were also quantified. RESULTS: The three cultures all showed abundant mineralization, with high calcium content by day 21. The expression of vimentin and nestin was sustained after osteogenic induction. The osteogenic medium induced a considerable elevation of STRO-1 positive cells. By day 7, the ALP mRNA level had increased more than 100-fold in DFSCs, PDLSCs, and DPSCs. Quantitative PCR results indicated dissimilarities of osteoblastic marker levels in the three dental stem cell cultures. CONCLUSIONS: DFSCs, PDLSCs and DPSCs have similar functional osteogenic differentiation capacities although their expressional profiles of key osteogenic markers show considerable variations. The STRO-1 positive cell fraction expands during osteogenic differentiation while vimentin and nestin expression remain high. For identification of stemness, functional studies rather than marker expressions are needed.


Asunto(s)
Antígenos de Superficie/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Fosfatasa Alcalina/metabolismo , Proliferación Celular , Células Cultivadas , Pulpa Dental/citología , Saco Dental/citología , Humanos , Ligamento Periodontal/citología
10.
Materials (Basel) ; 13(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781723

RESUMEN

BACKGROUND: Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed. METHODS: Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 µM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically. RESULTS: MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA. CONCLUSION: MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells.

11.
J Periodontal Res ; 55(5): 713-723, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32406091

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontal ligament cells (PDLCs) are an important source for periodontal tissue healing and regeneration. Proper cell adhesion is a key for survival of anchorage-dependent cells and also initiates further intracellular signals for essential cellular functions. We aimed to test 3 different synthetic conjugates with integrin-binding RGD sequence (SAK-c[RGDfC], AK-c[RGDfC], and SAK-opn on the adhesion of human PDLCs and subsequent events including proliferation, migration, behavior of cell surface molecules, and osteogenic differentiation. MATERIALS AND METHODS: Synthetic peptides were synthesized by solid-phase technique and attached to branched chain polymeric polypeptides via thioether linkage. Simple adsorption method was used to coat tissue culture plastic or electric arrays. PDLCs were isolated from 24 surgically extracted human third molars. Cell adhesion and proliferation were measured with real-time impedimetric xCELLigence SP system. Cell migration assay was performed with Ibidi® Culture inserts. Cell surface antigens were detected using flow cytometry analysis. Osteogenic differentiation was assessed with alkaline phosphatase (ALP) assay and Alizarin Red S staining, and real-time qPCR was performed to analyze the osteoblast-related gene expression. Osteogenic differentiation and adipogenic differentiation of PDLCs were monitored by real-time Electrical Cell-Substrate Impedance Spectroscopy (ECIS). RESULTS: Primary outcome of this study relies on that all three synthetic RGD peptides improved PDLC adhesion (P < .05). When animal serum is absent in culture medium, SAK-c[RGDfC] and AK-c[RGDfC] elevated cell adhesion (P < .05). Cell migration was enhanced by SAK-c[RGDfC] and AK-c[RGDfC] (P < .05). After 1-week treatment, all synthetic peptides elevated CD105 (1.7- to 2.2-fold) and CD146 (1.3- to 1.5-fold) markers and caused different integrin patterns. ALP activity (1.4-fold) and ARS (1.8- and 2.0-fold) were increased by SAK-c[RGDfC] and AK-c[RGDfC] in absence of osteogenic supplements, and all the peptides supported the mineralization under osteogenic condition (P < .05). RT-qPCR revealed the upregulation of bone sialoprotein (5.0- to 7.8-fold), osteocalcin (2.3- to 2.7-fold), and ALP (1.9- to 2.3-fold) gene expression in osteogenesis-induced PDLCs. ECIS monitoring showed that higher impedance was generated by the osteogenic induction compared with the adipogenic or the non-induced (P < .05). CONCLUSIONS: Our study demonstrates that SAK-c[RGDfC] and AK-c[RGDfC] improved adhesion and migration of PDLCs and supported osteogenic differentiation of PDLCs. These cyclic RGD peptides proved to be applicable biocompatible material in regenerative medicine.


Asunto(s)
Osteogénesis , Péptidos , Ligamento Periodontal , Fosfatasa Alcalina , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Oligopéptidos
12.
Front Physiol ; 8: 940, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375389

RESUMEN

We have recently developed a novel in vitro model using HAT-7 rat ameloblast cells to functionally study epithelial ion transport during amelogenesis. Our present aims were to identify key transporters of bicarbonate in HAT-7 cells and also to examine the effects of fluoride exposure on vectorial bicarbonate transport, cell viability, and the development of transepithelial resistance. To obtain monolayers, the HAT-7 cells were cultured on Transwell permeable filters. We monitored transepithelial resistance (TER) as an indicator of tight junction formation and polarization. We evaluated intracellular pH changes by microfluorometry using the fluorescent indicator BCECF. Activities of ion transporters were tested by withdrawal of various ions from the bathing medium, by using transporter specific inhibitors, and by activation of transporters with forskolin and ATP. Cell survival was estimated by alamarBlue assay. Changes in gene expression were monitored by qPCR. We identified the activity of several ion transporters, NBCe1, NHE1, NKCC1, and AE2, which are involved in intracellular pH regulation and vectorial bicarbonate and chloride transport. Bicarbonate secretion by HAT-7 cells was not affected by acute fluoride exposure over a wide range of concentrations. However, tight-junction formation was inhibited by 1 mM fluoride, a concentration which did not substantially reduce cell viability, suggesting an effect of fluoride on paracellular permeability and tight-junction formation. Cell viability was only reduced by prolonged exposure to fluoride concentrations greater than 1 mM. In conclusion, cultured HAT-7 cells are functionally polarized and are able to transport bicarbonate ions from the basolateral to the apical fluid spaces. Exposure to 1 mM fluoride has little effect on bicarbonate secretion or cell viability but delays tight-junction formation, suggesting a novel mechanism that may contribute to dental fluorosis.

13.
Curr Neuropharmacol ; 14(8): 914-934, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26791480

RESUMEN

Alzheimer's disease, Parkinson's disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.


Asunto(s)
Pulpa Dental/fisiología , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Enfermedades del Sistema Nervioso/terapia , Animales , Pulpa Dental/citología , Humanos , Inflamación/fisiopatología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Enfermedades del Sistema Nervioso/inmunología , Neuroinmunomodulación/fisiología
14.
Tissue Eng Part C Methods ; 21(12): 1226-36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26200762

RESUMEN

Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte secretion. Inhibition of basolateral NKCC1 by bumetanide reduced the response to ATP, indicating the active involvement of this transporter in Cl(-) secretion. In conclusion, we have demonstrated that both PTHSG and huSMG primary cultures cultivated in Hepato-STIM form two-dimensional monolayers in vitro on permeable supports and achieve active vectorial transepithelial electrolyte transport. The presence of both basolateral-to-apical anion fluxes and an apical-to-basolateral Na(+) flux indicates both acinar and ductal characteristics. With further refinement, this model should provide a firm basis for new interventions to correct salivary gland dysfunction.


Asunto(s)
Señalización del Calcio , Células Epiteliales/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Glándula Submandibular/metabolismo , Células Cultivadas , Células Epiteliales/patología , Humanos , Transporte Iónico , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Glándula Submandibular/patología
15.
Pancreatology ; 15(4 Suppl): S55-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25747281

RESUMEN

The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation.


Asunto(s)
Ameloblastos/metabolismo , Amelogénesis/fisiología , Esmalte Dental/metabolismo , Células Epiteliales/metabolismo , Humanos , Minerales/metabolismo
16.
Fogorv Sz ; 107(3): 99-105, 2014 Sep.
Artículo en Húngaro | MEDLINE | ID: mdl-25509511

RESUMEN

Salivary gland hypofunction, which may occur in head and neck cancers following therapeutic irradiation or in Sjogren's syndrome, drastically impair the patient's quality of life. Conventional treatments do not provide a satisfactory solution to the problem, therefore it is becoming increasingly urgent to develop completely new management approaches in particular, the challenge of restoring the function of acini. Many biologically based interventions studied, thus "reprogramming" with gene therapy of survivor ducts or regeneration potential of progenitor cells in the salivary gland. Our research group has been working on several models, which have shown that by using appropriate media containing extracellular proteins (e.g. BME, basal membrane extract) can be achieved acinar differentiation. A significant proportion of in vitro models of salivary gland are submandibular of origin, which however is different from the development and function of parotid. Our research group aimed to model the potential treatment options for salivary gland hypofunction, the carrier or bioactive molecules directed differentiation, as well as the potential of gene therapy on rat parotid-derived cell line (Par-C10). In our experiments, we have studied the morphological changes of Par-C10 cells cultured on permeable polyester membrane, or in three-dimensional cultures, using varying concentrations of BME. In addition, we have tested the use of recombinant adenovirus vectors that could modify Par-C10 cells and make them useful in gene therapy models. Our data suggest that Par-C10 cell line is suitable for modelling parotid gland tissue organization and may also serve as a useful gene therapy model system.


Asunto(s)
Glándula Parótida/patología , Glándula Parótida/fisiopatología , Animales , Membrana Basal , Diferenciación Celular , Línea Celular , Terapia Genética , Humanos , Modelos Biológicos , Calidad de Vida , Ratas , Glándulas Salivales/patología , Glándulas Salivales/fisiopatología , Síndrome de Sjögren/patología , Síndrome de Sjögren/fisiopatología
17.
Curr Pharm Des ; 20(7): 1104-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23782141

RESUMEN

The pancreas and salivary glands have similar anatomical structures and physiological functions producing bicarbonate-rich fluid containing digestive enzymes and other components to be delivered into the gut. Despite these similarities, the two organs are also different in numerous respects, especially regarding the inflammatory diseases affecting them. This article will summarize the pathophysiology and current and potential pharmacological treatments of chronic inflammatory diseases such as chronic pancreatitis, autoimmune pancreatitis, Sjögren's syndrome and irradiation-induced salivary gland atrophy. Despite the differences, in both organs the inflammatory process is accompanied by epithelial tissue destruction and fibrosis. Both in pancreatic and in salivary research, an important task is to stop or even reverse this process. The utilization of stem/progenitor cell populations previously identified in these organs and the application of mesenchymal stem cells are very promising for such regenerative purposes. In addition, gene therapy and tissue engineering research progressively advance and have already yielded clinically beneficial preliminary results for salivary gland diseases. For the hard-to-access, hard-to-regenerate pancreas these developments may also offer new solutions, especially since salivary and pancreatic progenitors are very similar in characteristics and may be mutually useful to regenerate the respective other organ as well. These novel developments could be of great significance and may bring new hope for patients since currently used therapeutic protocols in salivary and in pancreatic chronic inflammatory diseases offer primarily symptomatic treatments and limited beneficial outcome.


Asunto(s)
Pancreatitis Crónica/fisiopatología , Pancreatitis Crónica/terapia , Enfermedades de las Glándulas Salivales/fisiopatología , Enfermedades de las Glándulas Salivales/terapia , Atrofia/patología , Terapia Genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/cirugía , Pancreatitis Crónica/tratamiento farmacológico , Pancreatitis Crónica/cirugía , Enfermedades de las Glándulas Salivales/tratamiento farmacológico , Enfermedades de las Glándulas Salivales/cirugía , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/fisiopatología , Síndrome de Sjögren/cirugía , Trasplante de Células Madre , Ingeniería de Tejidos
18.
Neurochem Int ; 57(3): 323-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600437

RESUMEN

To reveal neuroendocrine/neurochemical changes that are responsible for the robust metabolic alterations seen during chronic morphine treatment we followed hormonal-, transcriptional- and behavioral changes during chronic morphine administration in adult male Wistar rats. Animals were implanted with increasing amount of slow release morphine tablets for 8 days. Morphine treated animals gain significantly less weight than placebo implanted controls. This weight loss is due to the dramatic decrease in the food intake and caloric efficiency in the first days of drug administration and to the lasting disregulated feeding pattern. Changes in feeding behavior included increase of diurnal and decrease of nocturnal feeding frequency in morphine treated rats. Significantly less leptin and insulin plasma levels were detected in morphine implanted animals than in placebo implanted controls, while adiponectin and ACTH concentration remain unchanged. Morphine treated rats display an increase of FosB/Delta FosB immunoreactivity at brain sites that have been implicated regulation of food intake and energy expenditure, including hypothalamic arcuate, paraventricular and ventromedial nuclei and in the lateral hypothalamic area as well as in the caudal brainstem. However, morphine-induced long-term metabolic alterations were not accompanied with any significant changes in the expression of anorexigenic neuropeptides POMC and CART in the hypothalamus and in the brainstem. The disregulated feeding pattern was not reflected in changes of orexin transcription, however, a compensatory upregulation was revealed in hypothalamic NPY expression.


Asunto(s)
Analgésicos Opioides/farmacología , Metabolismo/efectos de los fármacos , Morfina/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Glucemia/metabolismo , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Cartilla de ADN , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hormonas/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Aumento de Peso/efectos de los fármacos
19.
J Neurochem ; 114(2): 475-87, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20438612

RESUMEN

The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats were made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction.


Asunto(s)
Encéfalo/metabolismo , Dependencia de Morfina/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Estrés Fisiológico , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Encéfalo/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Dinorfinas/metabolismo , Encefalinas/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Morfina/efectos adversos , Dependencia de Morfina/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Precursores de Proteínas/metabolismo , Ratas , Ratas Wistar , Síndrome de Abstinencia a Sustancias/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo
20.
Endocrinology ; 150(7): 3118-27, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19179436

RESUMEN

Chronic opiate exposure induces neurochemical adaptations in the noradrenergic system. Enhanced responsiveness of the hypothalamo-pituitary-adrenal axis after morphine withdrawal has been associated with hyperactivity of ascending noradrenergic input from the nucleus of the solitary tract (NTS-A(2)) cell group to the hypothalamic paraventricular nucleus (PVN). This study addressed the role of morphine withdrawal-induced corticosterone (CORT) release in regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis in adrenalectomized (ADX) rats supplemented with low CORT pellet (ADX plus CORT). Present results show that in sham-ADX rats, noradrenergic neurons in the NTS-A(2) became activated during morphine withdrawal, as indicated by increased TH mRNA expression. However, this induction of TH expression is not detected in ADX plus CORT rats that are unable to mount CORT secretory response to morphine withdrawal. Total TH protein levels were elevated in the NTS-A(2) from sham-operated rats during morphine dependence and withdrawal, whereas we did not find any alteration in ADX plus CORT animals. Furthermore, high levels of TH phosphorylated (activated) at Ser31 (but not at Ser40) were found in the A(2) area from sham-morphine withdrawn rats. Consistent with these effects, we observed an increase in the enzyme activity of TH in the PVN. However, induction of morphine withdrawal to ADX plus CORT animals did not alter the phosphorylation (activation) of TH in NTS-A(2) and decreased TH activity in the PVN. These results suggest the existence of a positive reverberating circle in which elevated glucocorticoids during morphine abstinence play a permissive role in morphine withdrawal-induced activation of noradrenergic pathway innervating the PVN.


Asunto(s)
Corticosterona/metabolismo , Morfina/efectos adversos , Núcleo Hipotalámico Paraventricular/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Tirosina 3-Monooxigenasa/genética , Adrenalectomía , Hormona Adrenocorticotrópica/sangre , Animales , Hidrocortisona/sangre , Masculino , Dependencia de Morfina/fisiopatología , Fosforilación , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Pérdida de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...