Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(5): 827-834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332331

RESUMEN

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.

2.
Inorg Chem ; 62(39): 15797-15808, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37718553

RESUMEN

Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.

3.
J Am Chem Soc ; 145(30): 16597-16609, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37478053

RESUMEN

Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.

4.
Inorg Chem ; 62(23): 9025-9034, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227444

RESUMEN

Luminescent complexes of earth-abundant first-row transition metals are of renewed, broad interest due to their spectroscopic and photochemical properties as well as emerging applications. New strong-field polypyridine ligands have led to six-coordinate 3d3 chromium(III) complexes with intense spin-flip luminescence in solution at room temperature. The ground and emissive states both arise from the (t2)3 electron configuration involving the dπ levels (O point group symmetry labels). Pseudoctahedral 3d8 nickel(II) complexes with such strong ligands are a priori also promising candidates for spin-flip luminescence. In contrast, the relevant electron configurations involve the dσ orbitals and (e)2 configurations. We have prepared the known nickel(II) complexes [Ni(terpy)2]2+, [Ni(phen)3]2+, and [Ni(ddpd)2]2+ as well as the novel complexes [Ni(dgpy)2]2+ and [Ni(tpe)2]2+ forming a series with increasing ligand field strengths (terpy = 2,2':6',2″-terpyridine; phen = 1,10-phenanthroline; ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine; dgpy = 2,6-diguanidylpyridine; tpe = 1,1,1-tris(pyrid-2-yl)ethane). The lowest-energy singlet and triplet excited states of these nickel(II) complexes are analyzed based on absorption spectra using ligand field theory and CASSCF-NEVPT2 calculations for vertical transition energies and a model based on coupled potential energy surfaces, leading to calculated absorption spectra in good agreement with the experimental data. No photoluminescence signal was observed in the wavelength ranges identified through the analyses of the absorption spectra. The models provide insight into key differences between the nickel(II) complexes and their strongly luminescent chromium(III) analogues.

5.
Chem Sci ; 14(10): 2489-2500, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908954

RESUMEN

Great progress has been achieved on phosphorescent or photoactive complexes of the Earth-abundant transition metals, while examples for phosphorescent heavy main group element complexes are rare, in particular for group 14 complexes in the oxidation state +II. The known compounds often show only weak phosphorescence with fast non-radiative deactivation. The underlying photophysical processes and the nature of the phosphorescent electronic states have remained essentially unexplored. The present combined photophysical and theoretical study on tin(ii) and lead(ii) complexes E(bpep) with the dianionic tridentate ligand bpep2- (E = Sn, Pb; H2bpep = 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine) provides unprecedented insight in the excited state energy landscape of tetrel(ii) complexes. The tin complex shows green intraligand charge transfer (ILCT) phosphorescence both in solution and in the solid state. In spite of its larger heavy-atom effect, the lead complex only shows very weak red phosphorescence from a strongly distorted ligand-to-metal charge transfer (LMCT) state at low temperatures in the solid state. Detailed (TD-)DFT calculations explain these observations and delineate the major path of non-radiative deactivation via distorted LMCT states. These novel insights provide rational design principles for tetrel(ii) complexes with long-lived phosphorescence.

6.
Chemphyschem ; 24(12): e202300165, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36988001

RESUMEN

The chromium(III) complex [Cr(ddpd)2 ][BF4 ]3 shows two spin-flip emission bands in the near-infrared spectral region. These bands shift bathochromically by -14.1 and -7.7 cm-1 kbar-1 under hydrostatic pressure (Angew. Chem. Int. Ed. 2018, 57, 11069). The present study elucidates the structural changes of the chromium(III) cations under pressure using density functional theory with periodic boundary conditions and the resulting effects on the excited state energies using high-level CASSCF-NEVPT2 calculations. The differences of the bands in pressure sensitivity are traced back to a different orbital occupation of the intraconfigurational excited states.


Asunto(s)
Cromo , Cationes , Cromo/química
7.
Chemistry ; 29(9): e202202898, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36345821

RESUMEN

Molecular entities with doublet or triplet ground states find increasing interest as potential molecular quantum bits (qubits). Complexes with higher multiplicity might even function as qudits and serve to encode further quantum bits. Vanadium(II) ions in octahedral ligand fields with quartet ground states and small zero-field splittings qualify as qubits with optical read out thanks to potentially luminescent spin-flip states. We identified two V2+ complexes [V(ddpd)2 ]2+ with the strong field ligand N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine (ddpd) in two isomeric forms (cis-fac and mer) as suitable candidates. The energy gaps between the two lowest Kramers doublets amount to 0.2 and 0.5 cm-1 allowing pulsed EPR experiments at conventional Q-band frequencies (35 GHz). Both isomers possess spin-lattice relaxation times T1 of around 300 µs and a phase memory time TM of around 1 µs at 5 K. Furthermore, the mer isomer displays slow magnetic relaxation in an applied field of 400 mT. While the vanadium(III) complexes [V(ddpd)2 ]3+ are emissive in the near-IR-II region, the [V(ddpd)2 ]2+ complexes are non-luminescent due to metal-to-ligand charge transfer admixture to the spin-flip states.

8.
Dalton Trans ; 51(46): 17664-17670, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36342442

RESUMEN

Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern-Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 µs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes.

9.
Inorg Chem ; 61(37): 14616-14625, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36070611

RESUMEN

Although manganese ions exhibit a rich redox chemistry, redox processes are often accompanied by structural reorganization and a high propensity for ligand substitution, so that no complete structurally characterized manganese(II,III,IV) complex series without significant ligand sphere reorganization akin to the manganese(II,III,IV) oxides exists. We present here the series of pseudo-octahedral homoleptic manganese complexes [Mn(dgpy)2]n+ (n = 2-4) with the adaptable tridentate push-pull ligand 2,6-diguanidylpyridine (dgpy). Mn-N bond lengths and N-Mn-N bond angles change characteristically from n = 2 to n = 4, while the overall [MnN6] coordination sphere is preserved. The manganese(III) complex [Mn(dgpy)2]3+ exhibits a Jahn-Teller elongated octahedron and a negative D = -3.84 cm-1. Concomitantly with the consecutive oxidation of [Mn(dgpy)2]2+ to [Mn(dgpy)2]4+, the optical properties evolve with increasing ligand-to-metal charge transfer character of the absorption bands culminating in the panchromatic absorption of the purple-black manganese(IV) complex [Mn(dgpy)2]4+.

10.
Chemistry ; 28(57): e202201858, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35862259

RESUMEN

Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.

11.
Chem Commun (Camb) ; 58(22): 3701-3704, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226026

RESUMEN

Cr(ppy)3, a structural analog of the green phosphorescent Ir(ppy)3, emits even in solution at room temperature from a weakly distorted spin-flip state at 910 nm (Hppy = 2-phenylpyridine). The low energy arises from an enhanced covalence of the Cr-C bonds as compared to Cr-N bonds. Lower temperature reduces thermally activated decay increasing the emission intensity.


Asunto(s)
Luminiscencia , Compuestos Organometálicos , Iridio/química , Compuestos Organometálicos/química
12.
Inorg Chem ; 61(3): 1659-1671, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35020386

RESUMEN

In order to expand and exploit the useful properties of d6-iron(II) and d5-iron(III) complexes in potential magnetic, photophysical, or magnetooptical applications, crucial ligand-controlled parameters are the ligand field strength in a given coordination mode and the availability of suitable metal and ligand frontier orbitals for charge-transfer processes. The push-pull ligand 2,6-diguanidylpyridine (dgpy) features low-energy π* orbitals at the pyridine site and strongly electron-donating guanidinyl donors combined with the ability to form six-membered chelate rings for optimal metal-ligand orbital overlap. The electronic ground states of the pseudo-octahedral d6- and d5-complexes mer-[Fe(dgpy)2]2+, cis-fac-[Fe(dgpy)2]2+, and mer-[Fe(dgpy)2]3+ as well as their charge-transfer (CT) and metal-centered (MC) excited states are probed by variable temperature UV/vis absorption, NMR, EPR, and Mössbauer spectroscopy, magnetic susceptibility measurements at variable temperature as well as quantum chemical calculations.

13.
J Am Chem Soc ; 143(30): 11843-11855, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296865

RESUMEN

Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.

14.
Angew Chem Int Ed Engl ; 59(42): 18804-18808, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32558117

RESUMEN

Upconversion photoluminescence in hetero-oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex ions was developed that exhibits excitation-power density-dependent cooperative sensitization of the chromium-centered 2 E/2 T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2 F7/2 →2 F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric oxygen and can be observed in the presence of water molecules in the crystal lattice.

15.
J Am Chem Soc ; 142(17): 7947-7955, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32275150

RESUMEN

Luminescence from Earth-abundant metal ions in solution at room temperature is a very challenging objective due to the intrinsically weak ligand field splitting of first-row transition metal ions, which leads to efficient nonradiative deactivation via metal-centered states. Only a handful of 3dn metal complexes (n ≠ 10) show sizable luminescence at room temperature. Luminescence in the near-infrared spectral region is even more difficult to achieve as further nonradiative pathways come into play. No Earth-abundant first-row transition metal complexes have displayed emission >1000 nm at room temperature in solution up to now. Here, we report the vanadium(III) complex mer-[V(ddpd)2][PF6]3 yielding phosphorescence around 1100 nm in valeronitrile glass at 77 K as well as at room temperature in acetonitrile with 1.8 × 10-4% quantum yield (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine). In addition, mer-[V(ddpd)2][PF6]3 shows very strong blue fluorescence with 2% quantum yield in acetonitrile at room temperature. Our comprehensive study demonstrates that vanadium(III) complexes with d2 electron configuration constitute a new class of blue and NIR-II luminophores, which complement the classical established complexes of expensive precious metals and rare-earth elements.

16.
Chemistry ; 26(32): 7199-7204, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32167607

RESUMEN

The chromium(III) complex [CrIII (ddpd)2 ]3+ (molecular ruby; ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII (ddpd)2 ]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII (ddpd)2 ]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.

17.
Chemistry ; 26(30): 6820-6832, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32162414

RESUMEN

Synthesis, characterization, electrochemistry, and photophysics of homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2 ]2+ (22+ ) and [Ru(cpmp)(ddpd)]2+ (32+ ) bearing the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+ ) or two (22+ ) electron-deficient dipyridyl ketone fragments as electron-accepting sites enabling intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LL'CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 22+ shows 3 MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3 MLCT lifetime of 477 ns, whereas 32+ is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited 3 MC state potential energy surface. This study highlights the importance of the excited-state energies and geometries for the actual excited-state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light-sensitized thiol-ene click reaction.

18.
Chem Soc Rev ; 49(4): 1057-1070, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32025671

RESUMEN

Recent exciting developments in the area of mononuclear photoactive complexes with Earth-abundant metal ions (Cu, Zr, Fe, Cr) for potential eco-friendly applications in (phosphorescent) organic light emitting diodes, in imaging and sensing systems, in dye-sensitized solar cells and as photocatalysts are presented. Challenges, in particular the extension of excited state lifetimes, and recent conceptual breakthroughs in substituting precious and rare-Earth metal ions (e.g. Ru, Ir, Pt, Au, Eu) in these applications by abundant ions are outlined with selected examples. Relevant fundamentals of photophysics and photochemistry are discussed first, followed by conceptual and instructive case studies.

19.
Chemistry ; 26(5): 1003-1007, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31670422

RESUMEN

Photon upconversion has enjoyed increased interest in the last years due to its high potential for solar-energy harvesting and bioimaging. A challenge for triplet-triplet annihilation upconversion (TTA-UC) processes is to realize these features in solid materials without undesired phase segregation and detrimental dye aggregation. To achieve this, we combine a palladium porphyrin sensitizer and a 9,10-diphenylanthracene annihilator within a crystalline mesoporous metal-organic framework using an inverted design. In this modular TTA system, the framework walls constitute the fixed sensitizer, while caprylic acid coats the channels providing a solventlike environment for the mobile annihilator in the channels. The resulting solid material shows green-to-blue delayed upconverted emission with a luminescence lifetime of 373±5 µs, a threshold value of 329 mW cm-2 and a triplet-triplet energy transfer efficiency of 82 %. The versatile design allows straightforward changing of the acceptor amount and type.

20.
Angew Chem Int Ed Engl ; 58(50): 18075-18085, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600421

RESUMEN

Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6 ] chromophore [Cr(tpe)2 ]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2 ]3+ exhibits the longest luminescence lifetime (τ=4500 µs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2 ]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2 ]3+ surpass those of the classical photosensitizer [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA