Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794311

RESUMEN

Bcr-Abl is an oncoprotein with aberrant tyrosine kinase activity involved in the progression of chronic myeloid leukemia (CML) and has been targeted by inhibitors such as imatinib and nilotinib. However, despite their efficacy in the treatment of CML, a mechanism of resistance to these drugs associated with mutations in the kinase region has emerged. Therefore, in this work, we report the synthesis of 14 new 2,6,9-trisubstituted purines designed from our previous Bcr-Abl inhibitors. Here, we highlight 11b, which showed higher potency against Bcr-Abl (IC50 = 0.015 µM) than imatinib and nilotinib and exerted the most potent antiproliferative properties on three CML cells harboring the Bcr-Abl rearrangement (GI50 = 0.7-1.3 µM). In addition, these purines were able to inhibit the growth of KCL22 cell lines expressing Bcr-AblT315I, Bcr-AblE255K, and Bcr-AblY253H point mutants in micromolar concentrations. Imatinib and nilotinib were ineffective in inhibiting the growth of KCL22 cells expressing Bcr-AblT315I (GI50 > 20 µM) compared to 11b-f (GI50 = 6.4-11.5 µM). Molecular docking studies explained the structure-activity relationship of these purines in Bcr-AblWT and Bcr-AblT315I. Finally, cell cycle cytometry assays and immunodetection showed that 11b arrested the cells in G1 phase, and that 11b downregulated the protein levels downstream of Bcr-Abl in these cells.

2.
Antioxidants (Basel) ; 12(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37891979

RESUMEN

The microencapsulation of bioactive extracts of Chilean papaya waste, including both seeds and skin, was investigated. Papaya waste extract microcapsules utilizing maltodextrin at 10% (MD10), 20% (MD20), and 30% (MD30) (w/v) as the wall material through the freeze-drying process were obtained, and subsequently their physicochemical, antioxidant, and antimicrobial properties were evaluated. The TPC efficiency and yield values achieved were more than 60% for the microencapsulated seed and skin extracts, respectively. The best results for phenolic and antioxidant compounds were found in the microencapsulated seed extract with MD20, with a value of 44.20 ± 3.32 EAG/g DW for total phenols and an antioxidant capacity of 12.0 ± 0.32 mol ET/g DW for the DPPH and 236.3 ± 4.1 mol ET/g DW for the FRAP assay. In addition, the seed and skin samples reduced ROS generation in H2O2-treated Hek293 cells. In terms of antimicrobial activity, values ranging from 7 to 15 mm of inhibitory halos were found, with the maximum value corresponding to the inhibition of S. aureus, for both microencapsulated extracts. Therefore, the successful microencapsulation of the waste bioactive extracts (seed and skin) with the demonstrated antimicrobial and antioxidant properties highlight the bioactivity from Chilean papaya waste resources.

3.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37507978

RESUMEN

NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, C6 and C14 exhibited concentration-dependent inhibition of NOX2 (IC50~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound C6 significantly reduced the membrane translocation of p47phox, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47phox indicated that C6 and C14 interact with specific residues in the inner part of the groove of p47phox, the binding cavity for p22phox. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.

4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446093

RESUMEN

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).


Asunto(s)
Productos Biológicos , Cannabinoides , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Productos Biológicos/farmacología , Cannabinoides/farmacología , Cannabinoides/química , Imidazoles , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1 , Relación Estructura-Actividad , Mamíferos
5.
Pharmaceutics ; 14(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35745866

RESUMEN

We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 µM for BTK) and 5b (IC50 = 0.38 µM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.

6.
Photochem Photobiol Sci ; 21(3): 349-359, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088367

RESUMEN

Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.


Asunto(s)
Antineoplásicos , Fármacos Fotosensibilizantes , Antineoplásicos/química , Antineoplásicos/farmacología , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Compuestos Heterocíclicos con 2 Anillos , Imidazoles/química , Imidazoles/farmacología , Imidazolidinas , Compuestos Macrocíclicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
7.
Nat Prod Res ; 36(12): 3138-3142, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34528843

RESUMEN

Myrtaceae fruits (Myrceugenia obtusa, Luma apiculata, and Luma chequen) were used as food and medicine by Chilean indigenous people. This study aimed to evaluate the bioactive properties of these berry-type fruits. The antioxidant capacity determined by the FRAP assay varied between 10.4 and 646.9 mmol Fe+2/g, while the antibacterial activity against Staphylococcus aureus and Salmonella typhi was 0 - 33 mm and 0 - 7.33 mm, respectively. All the extracts were rich in polyphenols and showed low cytotoxicity. Overall, M. obtusa presented dissimilar results compared to those of L. apiculata and L. chequen, encouraging the use of these native fruits as food, nutraceutical, or pharmacological ingredients.


Asunto(s)
Myrtaceae , Antioxidantes/farmacología , Chile , Frutas , Alimentos Funcionales , Humanos , Extractos Vegetales/farmacología , Polifenoles/farmacología
8.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681877

RESUMEN

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Piridonas/química , Receptor Cannabinoide CB2/agonistas , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/farmacología , Benzoxazinas/química , Benzoxazinas/farmacología , Sitios de Unión , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Supervivencia Celular/efectos de los fármacos , Cricetulus , AMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Endocannabinoides/química , Endocannabinoides/farmacología , Glicéridos/química , Glicéridos/farmacología , Células HL-60 , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Morfolinas/química , Morfolinas/farmacología , Naftalenos/química , Naftalenos/farmacología , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología , Piridonas/farmacología , Receptor Cannabinoide CB2/química , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Relación Estructura-Actividad
9.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881717

RESUMEN

We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.


Asunto(s)
Antineoplásicos/síntesis química , Purinas/química , Relación Estructura-Actividad Cuantitativa , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Conformación Molecular , Purinas/síntesis química , Purinas/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
10.
Redox Biol ; 24: 101207, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31102971

RESUMEN

Carbonate radicals (CO3-) are generated by the bicarbonate-dependent peroxidase activity of cytosolic superoxide dismutase (Cu,Zn-SOD, SOD-1). The present work explored the use of bleaching of pyrogallol red (PGR) dye to quantify the rate of CO3- formation from bovine and human SOD-1 (bSOD-1 and hSOD-1, respectively). This approach was compared to previously reported methods using electron paramagnetic resonance spin trapping with DMPO, and the oxidation of ABTS (2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid). The kinetics of PGR consumption elicited by CO3- was followed by visible spectrophotometry. Solutions containing PGR (5-200 µM), SOD-1 (0.3-3 µM), H2O2 (2 mM) in bicarbonate buffer (200 mM, pH 7.4) showed a rapid loss of the PGR absorption band centered at 540 nm. The initial consumption rate (Ri) gave values independent of the initial PGR concentration allowing an estimate to be made of the rate of CO3- release of 24.6 ±â€¯4.3 µM min-1 for 3 µM bSOD-1. Both bSOD-1 and hSOD-1 showed a similar peroxidase activity, with enzymatic inactivation occurring over a period of 20 min. The single Trp residue (Trp32) present in hSOD-1 was rapidly consumed (initial consumption rate 1.2 ±â€¯0.1 µM min-1) with this occurring more rapidly than hSOD-1 inactivation, suggesting that these processes are not directly related. Added free Trp was rapidly oxidized in competition with PGR. These data indicate that PGR reacts rapidly and efficiently with CO3- resulting from the peroxidase activity of SOD-1, and that PGR-bleaching is a simple, fast and cheap method to quantify CO3- release from bSOD-1 and hSOD-1 peroxidase activity.


Asunto(s)
Bicarbonatos/química , Blanqueadores/química , Carbonatos/química , Radicales Libres/química , Pirogalol/análogos & derivados , Superóxido Dismutasa-1/química , Bicarbonatos/metabolismo , Carbonatos/metabolismo , Radicales Libres/metabolismo , Oxidación-Reducción , Pirogalol/química , Análisis Espectral , Superóxido Dismutasa-1/metabolismo
11.
Molecules ; 23(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029513

RESUMEN

A rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics and reducing the therapeutic arsenal available for treatment of infectious diseases. In the present study, we developed a new class of compounds with antibacterial activity obtained by a simple, two step synthesis and screened the products for in vitro antibacterial activity against ATCC® strains using the broth microdilution method. The compounds exhibited minimum inhibitory concentrations (MIC) of 1⁻32 µg/mL against Gram-positive ATCC® strains. The structure⁻activity relationship indicated that the thiophenol ring is essential for antibacterial activity and the substituents on the thiophenol ring module, for antibacterial activity. The most promising compounds detected by screening were tested against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) clinical isolates. We found remarkable activity against VREF for compounds 7 and 16, were the MIC50/90 were 2/4 µg/mL and 4/4 µg/mL, respectively, while for vancomycin the MIC50/90 was 256/512 µg/mL. Neither compound affected cell viability in any of the mammalian cell lines at any of the concentrations tested. These in vitro data show that compounds 7 and 16 have an interesting potential to be developed as new antibacterial drugs against infections caused by VREF.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Fenómenos Químicos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Difracción de Rayos X
12.
Arch Pharm (Weinheim) ; 351(5): e1800024, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29611620

RESUMEN

With the purpose of expanding the structural variety of chemical compounds available as pharmacological tools for the treatment of Alzheimer's disease, we synthesized and evaluated a novel series of indole-benzoxazinones (Family I) and benzoxazine-arylpiperazine derivatives (Family II) for potential human acetylcholinesterase (hAChE) inhibitory properties. The most active compounds 7a and 7d demonstrated effective inhibitory profiles with Ki values of 20.3 ± 0.9 µM and 20.2 ± 0.9 µM, respectively. Kinetic inhibition assays showed non-competitive inhibition of AChE by the tested compounds. According to our docking studies, the most active compounds from both series (Families I and II) showed a binding mode similar to donepezil and interact with the same residues.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Benzoxazinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Piperazinas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Benzoxazinas/síntesis química , Benzoxazinas/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Donepezilo , Diseño de Fármacos , Humanos , Indanos/farmacología , Simulación del Acoplamiento Molecular , Piperazinas/síntesis química , Piperazinas/química , Piperidinas/farmacología , Unión Proteica , Relación Estructura-Actividad
13.
Molecules ; 22(10)2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937618

RESUMEN

Factor Xa (FXa), a vitamin K-dependent serine protease plays a pivotal role in the coagulation cascade, one of the most interesting targets for the development of new anticoagulants. In the present work, we performed a virtual screening campaign based on ligand-based shape and electrostatic similarity search and protein-ligand docking to discover novel FXa-targeted scaffolds for further development of inhibitors. From an initial set of 260,000 compounds from the NCI Open database, 30 potential FXa inhibitors were identified and selected for in vitro biological evaluation. Compound 5 (NSC635393, 4-(3-methyl-4H-1,4-benzothiazin-2-yl)-2,4-dioxo-N-phenylbutanamide) displayed an IC50 value of 2.02 nM against human FXa. The identified compound may serve as starting point for the development of novel FXa inhibitors.


Asunto(s)
Inhibidores del Factor Xa/farmacología , Coagulación Sanguínea/efectos de los fármacos , Bases de Datos Factuales , Inhibidores Enzimáticos/farmacología , Factor Xa/química , Factor Xa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Relación Estructura-Actividad
14.
J Inorg Biochem ; 174: 90-101, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28648925

RESUMEN

Four new neutral N,N imidoyl-indazole ligands (L1, L3, L6, L7) and six new Pt(II)-based complexes (C1-5 and C7) were synthesized and characterized by spectroscopic and spectrometric techniques. Additionally, compounds L6, L7, C3, C5 and C7 were analyzed using X-ray diffraction. An evaluation of cytotoxicity and cell death in vitro for both ligands and complexes was performed by colorimetric assay and flow cytometry, in four cancer cell lines and VERO cells as the control, respectively. Cytotoxicity and selectivity demonstrated by each compound were dependent on the cancer cell line assayed. IC50 values of complexes C1-5 and C7 were lower than those exhibited for the reference drug cisplatin, and selectivity of these complexes was in general terms greater than cisplatin on three cancer cell lines studied. In HL60 cells, complexes C1 and C5 exhibited the lowest values of IC50 and were almost five times more selective than cisplatin. Flow cytometry results suggest that each complex predominantly induced necrosis, and its variant necroptosis, instead of apoptosis in all cancer cell lines studied. DNA binding assays, using agarose gel electrophoresis and UV-visible spectrophotometry studies, displayed a strong interaction only between C4 and DNA. In fact, theoretical calculations showed that C4-DNA binding complex was the most thermodynamic favorable interaction among the complexes in study. Overall, induction of cell death by dependent and independent-DNA-metal compound interactions were possible using imidoyl-indazole Pt(II) complexes as anticancer agents.


Asunto(s)
Antineoplásicos , Apoptosis/efectos de los fármacos , ADN de Neoplasias/metabolismo , Indazoles , Neoplasias/tratamiento farmacológico , Compuestos Organoplatinos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Chlorocebus aethiops , Células HL-60 , Células HeLa , Humanos , Indazoles/química , Indazoles/farmacocinética , Indazoles/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacocinética , Compuestos Organoplatinos/farmacología , Células Vero
15.
Bioorg Med Chem ; 25(10): 2681-2688, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28385594

RESUMEN

We synthesized a new family of six 4(3H)quinazolinimines based on the reaction between (E)-N-(2-cyanophenyl)benzimidoyl chloride and substituted anilines reaching the formation of their corresponding C2, N3-substituted quinazoliniminium chlorides. This method provides novel, direct and flexible access to diverse substituted 4(3H)quinazolinimines. New compounds obtained following the proposed synthesis were fully characterized and, including the thirteen 4(3H)quinazolinimines synthesized by this method and previously reported by us, were used to study its cytotoxic effect on neoplastic cell lines. The mechanism involved in cell toxicity was also studied. Results showed that these compounds were highly cytotoxic, in particular on Human Promyelocytic Leukemia cells (HL60) and Chronic Myelogenous Leukemia cells (K562) when compared with conventional antineoplastic drugs such as etoposide and cisplatin. The mechanism associated to cytotoxic effect was mainly apoptosis, which not was decreased by antioxidant addition, thereby suggesting that the compounds exert apoptotic death through a mechanism unrelated with oxidative stress.


Asunto(s)
Antineoplásicos/síntesis química , Quinazolinonas/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/síntesis química , Quinazolinonas/toxicidad , Relación Estructura-Actividad
16.
Eur J Pharm Sci ; 101: 1-10, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137469

RESUMEN

The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.


Asunto(s)
Bencimidazoles/química , Receptor Cannabinoide CB2/química , Tiofenos/química , Cannabinoides/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Receptor Cannabinoide CB1/química , Electricidad Estática
17.
Eur J Pharmacol ; 799: 41-47, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28132911

RESUMEN

Leukotriene A4 hydrolase is a soluble enzyme with epoxide hydrolase and aminopeptidase activities catalysing the conversion of leukotriene A4 to leukotriene B4 and the hydrolysis of the peptide proline-glycine-proline. Imbalances in leukotriene B4 synthesis are related to several pathologic conditions. Currently there are no available drugs capable to modulate the synthesis of leukotriene B4 or to block its receptors. Here we show the inhibitory profile of alpha lipoic acid on the activity of leukotriene A4 Hydrolase. Alpha lipoic acid inhibited both activities of the enzyme at concentrations lower than 10µM. The 5-lipoxygenase inhibitor zileuton, or the 5-lipoxygenase activating protein inhibitor MK-886, were unable to inhibit the activity of the enzyme. Acute promyelocytic leukaemia HL-60 cells were differentiated to leukotriene A4 hydrolase expressing neutrophil-like cells. Alpha lipoic acid inhibited the aminopeptidase activity of the cytosolic fraction from neutrophil-like cells but had no effect on the cytosolic fraction from undifferentiated cells. Docking and molecular dynamic approximations revealed that alpha lipoic acid participates in electrostatic interactions with K-565 and R-563, which are key residues for the carboxylate group recognition of endogenous substrates by the enzyme. Alpha lipoic acid is a compound widely used in clinical practice, most of its therapeutic effects are associated with its antioxidants properties, however, antioxidant effect alone is unable to explain all clinical effects observed with alpha lipoic acid. Our results invite to evaluate the significance of the inhibitory effect of alpha lipoic acid on the catalytic activity of leukotriene A4 hydrolase using in vivo models.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/metabolismo , Ácido Tióctico/farmacología , Citosol/enzimología , Relación Dosis-Respuesta a Droga , Epóxido Hidrolasas/antagonistas & inhibidores , Humanos , Neutrófilos/citología
18.
Eur J Med Chem ; 124: 17-35, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27560280

RESUMEN

Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 µM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.


Asunto(s)
Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Simulación del Acoplamiento Molecular , Receptor Cannabinoide CB2/metabolismo , Tiofenos/metabolismo , Tiofenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Diseño de Fármacos , Humanos , Unión Proteica , Conformación Proteica , Receptor Cannabinoide CB2/química , Tiofenos/síntesis química , Tiofenos/química
19.
Molecules ; 20(4): 6808-26, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25884555

RESUMEN

A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Modelos Moleculares , Purinas/química , Purinas/farmacología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Estructura Molecular , Purinas/síntesis química , Relación Estructura-Actividad , Células Vero
20.
PLoS Negl Trop Dis ; 7(4): e2173, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23638194

RESUMEN

Chagas' disease, produced by Trypanosoma cruzi, affects more than 8 million people, producing approximately 10,000 deaths each year in Latin America. Migration of people from endemic regions to developed countries has expanded the risk of infection, transforming this disease into a globally emerging problem. PGE2 and other eicosanoids contribute to cardiac functional deficits after infection with T. cruzi. Thus, the inhibition of host cyclooxygenase (COX) enzyme emerges as a potential therapeutic target. In vivo studies about the effect of acetylsalicylic acid (ASA) upon T. cruzi infection are controversial, and always report the effect of ASA at a single dose. Therefore, we aimed to analyze the effect of ASA at different doses in an in vivo model of infection and correlate it with the production of arachidonic acid metabolites. ASA decreased mortality, parasitemia, and heart damage in T. cruzi (Dm28c) infected mice, at the low doses of 25 and 50 mg/Kg. However, this effect disappeared when the high ASA doses of 75 and 100 mg/Kg were used. We explored whether this observation was related to the metabolic shift toward the production of 5-lipoxygenase derivatives, and although we did not observe an increase in LTB4 production in infected RAW cells and mice infected, we did find an increase in 15-epi-LXA4 (an ASA-triggered lipoxin). We also found high levels of 15-epi-LXA4 in T. cruzi infected mice treated with the low doses of ASA, while the high ASA doses decreased 15-epi-LXA4 levels. Importantly, 15-epi-LXA4 prevented parasitemia, mortality, and cardiac changes in vivo and restored the protective role in the treatment with a high dose of ASA. This is the first report showing the production of ASA-triggered lipoxins in T. cruzi infected mice, which demonstrates the role of this lipid as an anti-inflammatory molecule in the acute phase of the disease.


Asunto(s)
Aspirina/uso terapéutico , Enfermedad de Chagas/prevención & control , Lipoxinas/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad , Animales , Línea Celular , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...