Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 282, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866739

RESUMEN

Ionising radiation (IR) is widely used in cancer treatment, including for head and neck squamous cell carcinoma (HNSCC), where it induces significant DNA damage leading ultimately to tumour cell death. Among these lesions, DNA double strand breaks (DSBs) are the most threatening lesion to cell survival. The two main repair mechanisms that detect and repair DSBs are non-homologous end joining (NHEJ) and homologous recombination (HR). Among these pathways, the protein kinases ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR) and the DNA dependent protein kinase catalytic subunit (DNA-Pkcs) play key roles in the sensing of the DSB and subsequent coordination of the downstream repair events. Consequently, targeting these kinases with potent and specific inhibitors is considered an approach to enhance the radiosensitivity of tumour cells. Here, we have investigated the impact of inhibition of ATM, ATR and DNA-Pkcs on the survival and growth of six radioresistant HPV-negative HNSCC cell lines in combination with either X-ray irradiation or proton beam therapy, and confirmed the mechanistic pathway leading to cell radiosensitisation. Using inhibitors targeting ATM (AZD1390), ATR (AZD6738) and DNA-Pkcs (AZD7648), we observed that this led to significantly decreased clonogenic survival of HNSCC cell lines following both X-ray and proton irradiation. Radiosensitisation of HNSCC cells grown as 3D spheroids was also observed, particularly following ATM and DNA-Pkcs inhibition. We confirmed that the inhibitors in combination with X-rays and protons led to DSB persistence, and increased micronuclei formation. Cumulatively, our data suggest that targeting DSB repair, particularly via ATM and DNA-Pkcs inhibition, can exacerbate the impact of ionising radiation in sensitising HNSCC cell models.

2.
Cell Death Dis ; 15(2): 150, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368415

RESUMEN

Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation.


Asunto(s)
ADN Glicosilasas , Neoplasias de Cabeza y Cuello , Humanos , Protones , Transferencia Lineal de Energía , Daño del ADN , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo
3.
Front Oncol ; 12: 940377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052247

RESUMEN

A critical risk factor for head and neck squamous cell carcinoma (HNSCC), particularly of the oropharynx, and the response to radiotherapy is human papillomavirus (HPV) type-16/18 infection. Specifically, HPV-positive HNSCC display increased radiosensitivity and improved outcomes, which has been linked with defective signalling and repair of DNA double-strand breaks (DSBs). This differential response to radiotherapy has been recapitulated in vitro using cell lines, although studies utilising appropriate 3D models that are more reflective of the original tumour are scarce. Furthermore, strategies to enhance the sensitivity of relatively radioresistant HPV-negative HNSCC to radiotherapy are still required. We have analysed the comparative response of in vitro 3D spheroid models of oropharyngeal squamous cell carcinoma to x-ray (photon) irradiation and provide further evidence that HPV-positive cells, in this case now grown as spheroids, show greater inherent radiosensitivity compared to HPV-negative spheroids due to defective DSB repair. We subsequently analysed these and an expanded number of spheroid models, with a particular focus on relatively radioresistant HPV-negative HNSCC, for impact of poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib and talazoparib) in significantly inhibiting spheroid growth in response to photons but also proton beam therapy. We demonstrate that in general, PARP inhibition can further radiosensitise particularly HPV-negative HNSCC spheroids to photons and protons leading to significant growth suppression. The degree of enhanced radiosensitivity was observed to be dependent on the model and on the tumour site (oropharynx, larynx, salivary gland, or hypopharynx) from which the cells were derived. We also provide evidence suggesting that PARP inhibitor effectiveness relates to homologous recombination repair proficiency. Interestingly though, we observed significantly enhanced effectiveness of talazoparib versus olaparib specifically in response to proton irradiation. Nevertheless, our data generally support that PARP inhibition in combination with radiotherapy (photons and protons) should be considered further as an effective treatment for HNSCC, particularly for relatively radioresistant HPV-negative tumours.

4.
Front Oncol ; 11: 671431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277417

RESUMEN

Ionizing radiation (IR) principally acts through induction of DNA damage that promotes cell death, although the biological effects of IR are more broad ranging. In fact, the impact of IR of higher-linear energy transfer (LET) on cell biology is generally not well understood. Critically, therefore, the cellular enzymes and mechanisms responsible for enhancing cell survival following high-LET IR are unclear. To this effect, we have recently performed siRNA screening to identify deubiquitylating enzymes that control cell survival specifically in response to high-LET α-particles and protons, in comparison to low-LET X-rays and protons. From this screening, we have now thoroughly validated that depletion of the ubiquitin-specific protease 9X (USP9X) in HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells using small interfering RNA (siRNA), leads to significantly decreased survival of cells after high-LET radiation. We consequently investigated the mechanism through which this occurs, and demonstrate that an absence of USP9X has no impact on DNA damage repair post-irradiation nor on apoptosis, autophagy, or senescence. We discovered that USP9X is required to stabilize key proteins (CEP55 and CEP131) involved in centrosome and cilia formation and plays an important role in controlling pericentrin-rich foci, particularly in response to high-LET protons. This was also confirmed directly by demonstrating that depletion of CEP55/CEP131 led to both enhanced radiosensitivity of cells to high-LET protons and amplification of pericentrin-rich foci. Our evidence supports the importance of USP9X in maintaining centrosome function and biogenesis and which is crucial particularly in the cellular response to high-LET radiation.

5.
Elife ; 102021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34047696

RESUMEN

Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/ß receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.


Herpes simplex virus (HSV) is a human pathogen that causes genital herpes, an incurable disease that results in recurrent sores and inflammation. Infection with HSV induces a strong antiviral immune response, which results in large numbers of immune cells arriving at these lesions. But while some of these cells help to control viral replication, others might contribute to the inflammation that drives the disease. One of the first immune cells to respond to infection are neutrophils. Although neutrophils are generally protective, especially against bacteria and fungi, they have also been implicated in tissue damage and severe inflammation during viral infections. But what determines whether a neutrophil will help to fight off an infection or increase disease severity is still an open question. To investigate this, Lebratti, Lim et al. studied mice that had been infected with the genital herpes virus HSV-2, which is known to cause significant amounts of inflammation in mice. The experiments revealed that a signaling molecule called type I interferon, which is thought to be antiviral, causes neutrophils at the site of the infection to produce proteins, such as IL-18, which trigger an inflammatory reaction. Lebratti, Lim et al. found that type I interferon and IL-18 had shifting roles during the course of infection. In the early stages, both molecules had a protective effect, confirming results from previous studies. However, as the infection progressed, sustained levels of type I interferon signaling in neutrophils led to excess amounts of IL-18. Lebratti, Lim et al. discovered that blocking interferon signaling or decreasing the levels of IL-18 later during infection unexpectedly reduced the severity of the disease and resulted in less genital tissue damage. Further experiments also showed that mice infected with another genital herpes virus called HSV-1 did not experience sustained levels of type I interferon. This may explain why this virus causes less severe disease in mice. Understanding how the immune system reacts to viruses could reveal new targets for treatments of genital herpes. At the moment, there is little information about IL-18 production during genital herpes in humans. So, the next step is to see whether neutrophils behave in the same way and whether IL-18 can be detected during human disease. It is possible that the same immune components could promote disease in other infections too. If so, this work may help uncover new drug targets for other viral diseases.


Asunto(s)
Herpes Genital/virología , Herpesvirus Humano 2/patogenicidad , Inmunidad Mucosa , Interferón Tipo I/metabolismo , Interleucina-18/metabolismo , Membrana Mucosa/virología , Activación Neutrófila , Neutrófilos/virología , Vagina/virología , Animales , Anticuerpos/farmacología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Herpes Genital/inmunología , Herpes Genital/metabolismo , Herpes Genital/prevención & control , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 2/inmunología , Interacciones Huésped-Patógeno , Inmunidad Mucosa/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inervación , Membrana Mucosa/metabolismo , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Vagina/efectos de los fármacos , Vagina/inmunología , Vagina/metabolismo , Células Vero
6.
Methods Protoc ; 4(1)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669320

RESUMEN

The comet assay is a versatile, simple, and sensitive gel electrophoresis-based method that can be used to measure and accurately quantify DNA damage, particularly single and double DNA strand breaks, in single cells. While generally this is used to measure variation in DNA strand break levels and repair capacity within a population of cells, the technique has more recently been adapted and evolved into more complex analysis and detection of specific DNA lesions, such as oxidized purines and pyrimidines, achieved through the utilization of damage-specific DNA repair enzymes following cell lysis. Here, we detail a version of the enzyme-modified neutral comet (EMNC) assay for the specific detection of complex DNA damage (CDD), defined as two or more DNA damage lesions within 1-2 helical turns of the DNA. CDD induction is specifically relevant to ionizing radiation (IR), particularly of increasing linear energy transfer (LET), and is known to contribute to the cell-killing effects of IR due to the difficult nature of its repair. Consequently, the EMNC assay reveals important details regarding the extent and complexity of DNA damage induced by IR, but also has potential for the study of other genotoxic agents that may induce CDD.

7.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32161194

RESUMEN

Herpes simplex virus-2 (HSV-2) and HSV-1 both can cause genital herpes, a chronic infection that establishes a latent reservoir in the nervous system. Clinically, the recurrence frequency of HSV-1 genital herpes is considerably less than HSV-2 genital herpes, which correlates with reduced neuronal infection. The factors dictating the disparate outcomes of HSV-1 and HSV-2 genital herpes are unclear. In this study, we show that vaginal infection of mice with HSV-1 leads to the rapid appearance of mature DCs in the draining lymph node, which is dependent on an early burst of NK cell-mediated IFN-γ production in the vagina that occurs after HSV-1 infection but not HSV-2 infection. Rapid DC maturation after HSV-1 infection, but not HSV-2 infection, correlates with the accelerated generation of a neuroprotective T cell response and early accumulation of IFN-γ-producing T cells at the site of infection. Depletion of T cells or loss of IFN-γ receptor (IFN-γR) expression in sensory neurons both lead to a marked loss of neuroprotection only during HSV-1, recapitulating a prominent feature of HSV-2 infection. Our experiments reveal key differences in host control of neuronal HSV-1 and HSV-2 infection after genital exposure of mice, and they define parameters of a successful immune response against genital herpes.


Asunto(s)
Herpes Simple/inmunología , Enfermedades del Sistema Nervioso/inmunología , Enfermedades del Sistema Nervioso/virología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Femenino , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 2/patogenicidad , Interacciones Huésped-Patógeno , Interferón gamma/biosíntesis , Ratones , Ratones Endogámicos C57BL
8.
Cancer Drug Resist ; 3(4): 775-790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35582232

RESUMEN

Incidences of head and neck squamous cell carcinoma (HNSCC) have been on the rise in the last few decades, with a significant risk factor being human papillomavirus (HPV) type-16/18 infection, particularly in the development of oropharyngeal cancers. Radiotherapy (RT) is an important treatment modality for HNSCC, where it promotes extensive cellular DNA damage leading to the therapeutic effect. It has been well-established that HPV-positive HNSCC display better response rates and improved survival following RT compared to HPV-negative HNSCC. The differential radiosensitivity has been largely associated with altered cellular DNA damage response mechanisms in HPV-positive HNSCC, and particularly with the signaling and repair of DNA double strand breaks. However, other factors, particularly hypoxia present within the solid cancer, have a major impact on relative radioresistance. Consequently, recent approaches aimed at enhancing the radiosensitivity of HNSCC have largely centered on targeting key proteins involved in DNA repair, DNA damage checkpoint activation, and hypoxia signaling. These studies have utilised in vitro and in vivo models of HPV-positive and HPV-negative HNSCC and examined the impact of specific inhibitors against the targets in combination with radiation in suppressing HNSCC cell growth and survival. Here, accumulating evidence has shown that targeting enzymes including poly (ADP-ribose) polymerase, ataxia telangiectasia and Rad-3 related, DNA-dependent protein kinase catalytic subunit, and checkpoint kinase 1 can radiosensitise HNSCC cells which should be taken forward in further preclinical studies, with the goal of optimizing the future effective RT treatment of HNSCC.

9.
Cell Death Discov ; 4: 117, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588339

RESUMEN

Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.

10.
Cell Death Dis ; 9(5): 492, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29706648

RESUMEN

Unintended outcomes of cancer therapy include ionizing radiation (IR)-induced stem cell depletion, diminished regenerative capacity, and accelerated aging. Stem cells exhibit attenuated DNA damage response (DDR) and are hypersensitive to IR, as compared to differentiated non-stem cells. We performed genomic discovery research to compare stem cells to differentiated cells, which revealed Phosphoprotein phosphatase 2A (PP2A) as a potential contributor to susceptibility in stem cells. PP2A dephosphorylates pATM, γH2AX, pAkt etc. and is believed to play dual role in regulating DDR and apoptosis. Although studied widely in cancer cells, the role of PP2A in normal stem cell radiosensitivity is unknown. Here we demonstrate that constitutively high expression and radiation induction of PP2A in stem cells plays a role in promoting susceptibility to irradiation. Transient inhibition of PP2A markedly restores DNA repair, inhibits apoptosis, and enhances survival of stem cells, without affecting differentiated non-stem and cancer cells. PP2Ai-mediated stem cell radioprotection was demonstrated in murine embryonic, adult neural, intestinal, and hematopoietic stem cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oxazoles/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Tolerancia a Radiación/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Células Cultivadas , Reparación del ADN , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/efectos de la radiación , Humanos , Masculino , Toxinas Marinas , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/enzimología , Células Madre Embrionarias de Ratones/patología , Células Madre Embrionarias de Ratones/efectos de la radiación , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Células-Madre Neurales/efectos de la radiación , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Células Madre/enzimología , Células Madre/patología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
11.
Stem Cell Reports ; 7(6): 1013-1022, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27974220

RESUMEN

Dynamic spatiotemporal modification of chromatin around DNA damage is vital for efficient DNA repair. Normal stem cells exhibit an attenuated DNA damage response (DDR), inefficient DNA repair, and high radiosensitivity. The impact of unique chromatin characteristics of stem cells in DDR regulation is not yet recognized. We demonstrate that murine embryonic stem cells (ES) display constitutively elevated acetylation of histone H3 lysine 9 (H3K9ac) and low H3K9 tri-methylation (H3K9me3). DNA damage-induced local deacetylation of H3K9 was abrogated in ES along with the subsequent H3K9me3. Depletion of H3K9ac in ES by suppression of monocytic leukemia zinc finger protein (MOZ) acetyltransferase improved ATM activation, DNA repair, diminished irradiation-induced apoptosis, and enhanced clonogenic survival. Simultaneous suppression of the H3K9 methyltransferase Suv39h1 abrogated the radioprotective effect of MOZ inhibition, suggesting that high H3K9ac promoted by MOZ in ES cells obstructs local upregulation of H3K9me3 and contributes to muted DDR and increased radiosensitivity.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/efectos de la radiación , Histonas/metabolismo , Lisina/metabolismo , Tolerancia a Radiación , Radiación Ionizante , Acetilación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Histona Acetiltransferasas/metabolismo , Metilación , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/efectos de la radiación , Tolerancia a Radiación/efectos de la radiación , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
12.
Int J Nanomedicine ; 9: 2191-204, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24855356

RESUMEN

Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.


Asunto(s)
Aneugénicos/farmacología , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/fisiología , Oro/farmacología , Macrófagos/fisiología , Nanopartículas del Metal/administración & dosificación , Oxidación-Reducción/efectos de los fármacos , Aneuploidia , Animales , Humanos , Macrófagos/efectos de los fármacos , Ensayo de Materiales , Ratones , Tamaño de la Partícula
13.
Mutagenesis ; 28(3): 287-99, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23462852

RESUMEN

In nanotoxicology, the capacity of nanoparticles of the same composition but different shape to induce cytotoxicity and genotoxicity is largely unknown. A series of cytotoxic and genotoxic responses following in vitro exposure to differently shaped CuO nanoparticles (CuO NPs, mass concentrations from 0.1 to 100 µg/ml) were assessed in murine macrophages RAW 264.7 and in peripheral whole blood from healthy volunteers. Cytotoxicity, cytostasis and genotoxicity were evaluated by the colorimetric assay of formazan reduction [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT)] and by the cytokinesis-block micronucleus cytome (CBMN Cyt) assay. The comet assay was applied for detecting DNA strand breaks and information on oxidative damage to DNA (oxidised purines and pyrimidines). The MTT assay revealed a decrease in cell viability in RAW 264.7 cells and peripheral blood lymphocytes (PBL) with significant dose-effect relationships for the different CuO NP shapes. The comet assay revealed a dose-dependent increase in primary DNA damage, and a significant increase in oxidative damage to DNA was also detectable, as well as increased frequency of micronuclei in binucleated cells, often in a dose-related manner. Proliferative activity, cytotoxicity and apoptotic markers showed a significant trend in the two cell types. Finally, we have differentiated clastogenic events from aneugenic events by fluorescence in situ hybridisation with human and murine pancentromeric probes, revealing for the first time characteristic aneugenic responses related to the shape of CuO NPs and cell type. Independently of size and shape, all CuO NPs revealed a clear-cut cytotoxic and genotoxic potential; this suggests that CuO NPs are good candidates for positive controls in nanotoxicology.


Asunto(s)
Cobre/toxicidad , Nanopartículas/toxicidad , Aneuploidia , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Aberraciones Cromosómicas/inducido químicamente , Cobre/química , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Mitosis/efectos de los fármacos , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula
14.
Amyotroph Lateral Scler ; 11(1-2): 122-4, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19707910

RESUMEN

The aim of the present study was to investigate the possible contribution of three common functional polymorphisms in the DNA repair protein X-ray repair cross-complementing group 1 (XRCC1), namely Arg194Trp (rs1799782), Arg280His (rs25489) and Arg399Gln (rs25487), to sporadic amyotrophic lateral sclerosis (SALS). We genotyped 206 Italian SALS patients and 203 matched controls for XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms by means of PCR/RFLP technique, searching for association between any of the studied polymorphisms and disease risk, age and site of onset. We observed a statistically significant difference in XRCC1 Gln399 allele frequencies between SALS cases and controls (0.39/0.28; p=0.001). The present study suggests that the XRCC1 Arg399Gln polymorphism might contribute to SALS risk.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Polimorfismo de Longitud del Fragmento de Restricción , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/epidemiología , Genotipo , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Factores de Riesgo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...