Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777288

RESUMEN

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

2.
IBRO Neurosci Rep ; 16: 443-454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544793

RESUMEN

Calabash chalk (CaC) is an aluminium silicate hydroxide compound with heavy metal constituents, making it a potential neurotoxicant. Pregnant women often consume CaC as an antiemetic, which may interfere with the normal development of the foetal brain. Here, we evaluated the effects of CaC administration in pregnant rats on the brain of the offspring. Wistar rat dams were assigned to one of three groups: control, 200 mg/kg and 800 mg/kg of a CaC suspension. Administrations lasted 14 days (gestation days 7-20). On day 14, 5-bromo-2'-deoxyuridine (BrdU) was administered and dams were allowed to term. Behavioural tests were performed on different days as the pups matured, and they were sacrificed on post-natal days 30 and 60. Brains were processed for histology and Western blotting. Results showed no significant differences in surface righting reflex, cliff avoidance, negative geotaxis and open-field activity. No hippocampal and somatosensory cortical cytoarchitectonic alterations and no significant signs of glial fibrillary acidic protein (GFAP) activation were observed. Neuronal nuclei counts showed variability in the somatosensory cortex and hippocampus of the CaC group. BrdU-positive cells were significantly lower in the 200 mg/kg group and higher in the 800 mg/kg group. Doublecortin-X-positive cells were not different in all the CaC groups. Astrocytes and microglia Western blotting quantification confirmed no significant increase in pup glial cells in adulthood. Prenatal consumption of CaC at indicated dosages may not be deleterious to the developing brain, especially after cessation of exposure and during maturation of the animal. However, the differences in neuronal and glial populations may be due to their ability to cope with CaC.

3.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581127

RESUMEN

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Asunto(s)
Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Oligonucleótidos Antisentido/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Animales , Antagomirs/farmacología , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Epilepsia , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteómica , Ratas , Ratas Sprague-Dawley , Convulsiones/genética , Análisis de Sistemas , Regulación hacia Arriba/efectos de los fármacos
4.
Curr Alzheimer Res ; 15(3): 259-272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28675996

RESUMEN

BACKGROUND: It has been shown that theta (6-10 Hz) and delta (1-6 Hz) ongoing electroencephalographic (EEG) rhythms revealed variations in the cortical arousal in C57 Wild Type (WT) mice during cage exploration (active condition) compared to awake quiet behavior (passive condition; IMI PharmaCog project, www.pharmacog.eu). OBJECTIVE: The objective was to test if these EEG rhythms might be abnormal in old PDAPP mice modeling Alzheimer's disease (AD) with a hAPP Indiana V717F mutation (They show abnormal neural transmission, cognitive deficits, and brain accumulation of Aß1-42). METHODS: Ongoing EEG rhythms were recorded by a frontoparietal bipolar channel in 15 PDAPP and 23 WT C57 male mice (mean age of 22.8 months ±0.4 and 0.3 standard error, respectively). EEG absolute power (density) was calculated. Frequency and amplitude of individual delta and theta frequency (IDF and ITF) peaks were considered during passive and active states in the wakefulness. RESULTS: Compared with the WT group, the PDAPP group showed higher frequency of the IDF during the passive condition and lower frequency of the ITF during the active state. Furthermore, the WT but not PDAPP group showed significant changes in the frontoparietal EEG power (IDF, ITF) during active over passive state. CONCLUSION: PDAPP mice were characterized by less changes in the brain arousal during an active state as revealed by frontoparietal EEG rhythms. Future studies will have to cross-validate the present results on large animal groups, clarify the neurophysiological underpinning of the effect, and test if the disease modifying drugs against AD amyloidosis normalize those candiate EEG biomarkers in PDAPP mice.


Asunto(s)
Enfermedad de Alzheimer , Mapeo Encefálico , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Electroencefalografía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Nivel de Alerta , Ondas Encefálicas/genética , Modelos Animales de Enfermedad , Análisis de Fourier , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Fenilalanina/genética , Valina/genética
5.
Magn Reson Imaging ; 32(5): 529-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24629516

RESUMEN

Therapeutic effects of interferon-α (IFN-α) are known to be associated with CNS toxicity in humans, and in particular with depression symptoms. Animal models of IFN-α-induced depression (sickness behaviour) have been developed in rodents using various preparations, dosing schedules or routes of administrations. In this work, Manganese Enhanced MRI (MEMRI) has been applied to investigate an experimental model of sickness behaviour induced by administration of IFN-α in rats. IFN-α (3.10(5) U/kg), or vehicle, was daily administered i.p., for 7days in rats (n=20 IFN-α treated and n=20 controls). After treatment, animals were assigned to behavioural (n=10 treated, n=10 control) or MRI (n=10 treated and n=10 control) studies. Animals assigned to the MRI study received two repeated i.p. injections of MnCl2, before image acquisition. Images were acquired at 4.7T using T1 mapping for determination of Mn concentration in brain. After co-registration of T1 maps to a digital brain atlas, differences between brains of treated and untreated animals were assessed pixel-to-pixel by statistical analysis. Behavioural tests showed alterations in freezing and struggling parameters, as expected in an experimental model of sickness behaviour. MRI showed a well defined brain region, mainly contained in the visual cortex, in which Mn uptake was significantly lower in treated than in control animals, indicating probably altered functionality. No significant difference was detected in other brain regions. In addition, a statistically significant decrease in the volume of the pituitary gland, paralleled by a slight increase in its Mn content, was detected in treated animals. MEMRI provides both morphological and functional information in the brain of small laboratory animals and can constitute a valuable tool in the investigation of experimental models of psychiatric diseases.


Asunto(s)
Cloruros , Depresión/fisiopatología , Modelos Animales de Enfermedad , Compuestos de Manganeso , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Hipófisis/patología , Hipófisis/fisiopatología , Animales , Medios de Contraste , Depresión/inducido químicamente , Depresión/patología , Humanos , Interferón-alfa , Masculino , Trastornos Mentales/inducido químicamente , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Magn Reson Imaging ; 31(6): 1001-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23623332

RESUMEN

Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.


Asunto(s)
Mapeo Encefálico/métodos , Circulación Cerebrovascular , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
7.
Mol Immunol ; 55(1): 100-4, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23351392

RESUMEN

Epilepsy is a chronic disorder that affects 1% of the world population and is characterized by chronically reoccurring seizures. Seizures are initiated by abnormal excessive or synchronous neuronal activity in the brain. Epilepsy requires life long anti-convulsant therapy and current therapies for epilepsy selectively target neuronal activity. In the last decade, cytokines and vascular alterations have been discussed in relation to the pathogenesis of epilepsy, suggesting a potential role for inflammation mechanisms in seizure induction. More recently, it has been shown that leukocyte trafficking plays a key role in seizure generation, and that anti-leukocyte adhesion therapy has therapeutic and preventative effects in an experimental model of human epilepsy. These results were supported by evidence in humans showing that leukocytes accumulate in the brain parenchyma of patients with different types of epilepsy. Finally, recent clinical observations suggest that therapies able to interfere with leukocyte trafficking may have a therapeutic effect in epilepsy. The emerging role for leukocytes and leukocyte adhesion mechanisms in seizure generation provides insight into the mechanisms of brain damage and may contribute to the development of novel therapeutic strategies in epilepsy.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Epilepsia/inmunología , Animales , Adhesión Celular/inmunología , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocinas/fisiología , Quimiotaxis de Leucocito/genética , Citocinas/genética , Citocinas/metabolismo , Citocinas/fisiología , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Humanos , Leucocitos/patología , Leucocitos/fisiología , Modelos Biológicos , Terapia Molecular Dirigida , Convulsiones/genética , Convulsiones/inmunología , Convulsiones/patología , Convulsiones/terapia
8.
Front Syst Neurosci ; 7: 106, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24379759

RESUMEN

Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.

9.
Epilepsia ; 53(7): 1113-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22691043

RESUMEN

This monograph summarizes one of the sessions of the XI Workshop on Neurobiology of Epilepsy (WONOEP), and provides a critical review of the current state of the field. Speakers and discussants focused on several broad topics: (1) the coexistence of inflammatory processes encompassing several distinct signal-transduction pathways with the epileptogenic process; (2) evidence for the contribution of specific inflammatory molecules and processes to the onset and progression of epilepsy, as well as to epilepsy-related morbidities including depression; (3) the complexity and intricate cross-talk of the pathways involved in inflammation, and the discrete, often opposite roles of a given mediator in neurons versus other cell types. These complexities highlight the challenges confronting the field as it aims to define inflammatory molecules as promising targets for epilepsy prevention and treatment.


Asunto(s)
Antiinflamatorios/uso terapéutico , Epilepsia/tratamiento farmacológico , Moléculas de Adhesión Celular/metabolismo , Epilepsia/complicaciones , Epilepsia/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología
10.
Epilepsia ; 52(9): 1627-34, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21627645

RESUMEN

PURPOSE: A link between seizure susceptibility, blood-brain barrier (BBB) failure, and the activation of peripheral white blood cells has been recently proposed. However, the molecular players involved in this cascade of events are unknown. We tested the hypothesis that immunosupression by splenectomy or lack of perforin, a downstream factor of natural killer (NK) and cytotoxic T cells, could reduce seizure onset. METHODS: Pilocarpine was used to induce seizures in adult rats wild-type and perforin-deficient mice. Splenectomy was performed prior to pilocarpine injection. Seizure onset was evaluated by electroencephalography (EEG) and joint time-frequency analysis. Spleens from control and pilocarpine-treated groups were analyzed for anatomical changes and CD3+ cell content. BBB damage was assessed by measuring albumin parenchymal extravasation. Fluorescence-activated cell sorting (FACS) analysis was performed on spleen and brain tissue of wild-type and perforin-deficient mice treated, or not, with pilocarpine. KEY FINDINGS: Splenectomy significantly reduced seizure-associated mortality. Histologic analysis of the spleens exposed to pilocarpine revealed altered white and red pulp anatomy and an increase in CD3+ T cells. Onset of status epilepticus (SE) and mortality were significantly decreased in perforin-deficient mice. Pilocarpine significantly increased spleen NK 1.1 and CD8+ cell percentage; in contrast, the brain inflammatory cell profile remained unchanged at the time of pilocarpine SE. BBB damage was reduced in the perforin-deficient pilocarpine-treated mice. SIGNIFICANCE: Immunosuppressant maneuvers such as splenectomy or lack of perforin decrease the onset or the severity of pilocarpine SE. Our results suggest that cytotoxic lymphocytes, and specifically the cytolytic factor perforin, may be key molecular players involved in the axis between peripheral intravascular inflammation and seizures.


Asunto(s)
Convulsiones/etiología , Convulsiones/patología , Linfocitos T Citotóxicos/fisiología , Animales , Antígenos CD/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Electroencefalografía , Citometría de Flujo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina/deficiencia , Pilocarpina , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/terapia , Esplenectomía/métodos , Linfocitos T Citotóxicos/efectos de los fármacos
11.
Epilepsia ; 52(3): 572-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21269288

RESUMEN

PURPOSE: We have recently reported that viral vector-mediated supplementation of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) in a lesioned, epileptogenic rat hippocampus limits neuronal damage, favors neurogenesis, and reduces spontaneous recurrent seizures. To test if this treatment can also prevent hippocampal circuit reorganization, we examined here its effect on mossy fiber sprouting, the best studied form of axonal plasticity in epilepsy. METHODS: A herpes-based vector expressing FGF-2 and BDNF was injected into the rat hippocampus 3 days after an epileptogenic insult (pilocarpine-induced status epilepticus). Continuous video-electroencephalography (EEG) monitoring was initiated 7 days after status epilepticus, and animals were sacrificed at 28 days for analysis of cell loss (measured using NeuN immunofluorescence) and mossy fiber sprouting (measured using dynorphin A immunohistochemistry). KEY FINDINGS: The vector expressing FGF-2 and BDNF decreased both mossy fiber sprouting and the frequency and severity of spontaneous seizures. The effect on sprouting correlated strictly with the cell loss in the terminal fields of physiologic mossy fiber innervation (mossy cells in the dentate gyrus hilus and CA3 pyramidal neurons). SIGNIFICANCE: These data suggest that the supplementation of FGF-2 and BDNF in an epileptogenic hippocampus may prevent epileptogenesis by decreasing neuronal loss and mossy fiber sprouting, that is, reducing some forms of circuit reorganization.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Expresión Génica/genética , Hipocampo/patología , Fibras Musgosas del Hipocampo/patología , Regeneración Nerviosa/genética , Estado Epiléptico/patología , Animales , Citomegalovirus , Dinorfinas/genética , Electroencefalografía , Vectores Genéticos , Hipocampo/efectos de los fármacos , Masculino , Fibras Musgosas del Hipocampo/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Ratas , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Estado Epiléptico/inducido químicamente , Grabación en Video
12.
J Neuroinflammation ; 7: 81, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21087489

RESUMEN

Under certain experimental conditions, neurotrophic factors may reduce epileptogenesis. We have previously reported that local, intrahippocampal supplementation of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) increases neurogenesis, reduces neuronal loss, and reduces the occurrence of spontaneous seizures in a model of damage-associated epilepsy. Here, we asked if these possibly anti-epileptogenic effects might involve anti-inflammatory mechanisms. Thus, we used a Herpes-based vector to supplement FGF-2 and BDNF in rat hippocampus after pilocarpine-induced status epilepticus that established an epileptogenic lesion. This model causes intense neuroinflammation, especially in the phase that precedes the occurrence of spontaneous seizures. The supplementation of FGF-2 and BDNF attenuated various parameters of inflammation, including astrocytosis, microcytosis and IL-1ß expression. The effect appeared to be most prominent on IL-1ß, whose expression was almost completely prevented. Further studies will be needed to elucidate the molecular mechanism(s) for these effects, and for that on IL-1ß in particular. Nonetheless, the concept that neurotrophic factors affect neuroinflammation in vivo may be highly relevant for the understanding of the epileptogenic process.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Hipocampo , Inflamación/patología , Convulsiones/patología , Convulsiones/prevención & control , Animales , Electroencefalografía , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Interleucina-1beta/metabolismo , Distribución Aleatoria , Ratas , Recurrencia , Convulsiones/metabolismo , Convulsiones/fisiopatología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
13.
J Comp Neurol ; 518(16): 3381-407, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20575073

RESUMEN

In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called "classic hippocampal sclerosis." No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive "endstage" pathology resulting from years of spontaneous seizures. We posed the alternative hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30-minute episodes of perforant pathway stimulation in Sprague-Dawley rats increased granule cell paired-pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8-hour episode of reduced-intensity stimulation in Long-Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal-onset seizures began 16-25 days postinjury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically "cryptic" excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury.


Asunto(s)
Epilepsia , Hipocampo , Esclerosis , Animales , Estimulación Eléctrica , Epilepsia/patología , Epilepsia/fisiopatología , Hipocampo/citología , Hipocampo/patología , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Neuronas/metabolismo , Neuronas/patología , Vía Perforante/patología , Vía Perforante/fisiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Esclerosis/patología , Esclerosis/fisiopatología
14.
J Neuroimmunol ; 224(1-2): 22-7, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20542576

RESUMEN

Epilepsy has been considered mainly a neuronal disease, without much attention to non-neuronal cells. In recent years growing evidence suggest that astrocytes, microglia, blood leukocytes and blood-brain barrier breakdown are involved in the pathogenesis of epilepsy. In particular, leukocyte-endothelium interactions and eventually subsequent leukocyte recruitment in the brain parenchyma seem to represent key players in the epileptogenic cascade. Chemokines are chemotactic factors controlling leukocyte migration under physiological and pathological conditions. In the light of recent advances in our understanding of the role of inflammation mechanisms in the pathogenesis of epilepsy, pro-inflammatory chemokines may play a critical role in epileptogenesis.


Asunto(s)
Quimiocinas/fisiología , Quimiotaxis de Leucocito/inmunología , Encefalitis/inmunología , Encefalitis/metabolismo , Epilepsia/inmunología , Epilepsia/metabolismo , Animales , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Encefalitis/fisiopatología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(7): 3180-5, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133704

RESUMEN

Refractory temporal lobe epilepsy (TLE) is associated with a dysfunction of inhibitory signaling mediated by GABA(A) receptors. In particular, the use-dependent decrease (run-down) of the currents (I(GABA)) evoked by the repetitive activation of GABA(A) receptors is markedly enhanced in hippocampal and cortical neurons of TLE patients. Understanding the role of I(GABA) run-down in the disease, and its mechanisms, may allow development of medical alternatives to surgical resection, but such mechanistic insights are difficult to pursue in surgical human tissue. Therefore, we have used an animal model (pilocarpine-treated rats) to identify when and where the increase in I(GABA) run-down occurs in the natural history of epilepsy. We found: (i) that the increased run-down occurs in the hippocampus at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made), and then extends to the neocortex and remains constant in the course of the disease; (ii) that the phenomenon is strictly correlated with the occurrence of spontaneous seizures, because it is not observed in animals that do not become epileptic. Furthermore, initial exploration of the molecular mechanism disclosed a relative increase in alpha4-, relative to alpha1-containing GABA(A) receptors, occurring at the same time when the increased run-down appears, suggesting that alterations in the molecular composition of the GABA receptors may be responsible for the occurrence of the increased run-down. These observations disclose research opportunities in the field of epileptogenesis that may lead to a better understanding of the mechanism whereby a previously normal tissue becomes epileptic.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Electrofisiología , Fluoresceínas , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Oocitos/metabolismo , Compuestos Orgánicos , Pilocarpina , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología , Xenopus
17.
Physiol Behav ; 98(5): 579-86, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19772866

RESUMEN

Behavioral scoring is commonly used to access seizure intensity in different seizure models. Racine's scale, originally developed for the amygdala-kindling model, is also frequently used as an intensity measurement in other experimental seizure or epilepsy models. The aim of the present study is to assess the validity of Racine's scale as an adequate seizure intensity measurement for the Pentylenetetrazole (PTZ) model. Male adult Wistar rats received systemic injections of PTZ starting with an initial dose of 20 mg/kg added up by 10 mg/kg every 15 min until the occurrence of a 5minute lasting convulsive seizure. Simultaneous EEG and video recordings were made. The PTZ-induced seizures gradually increased in intensity. Eleven behavioral categories were identified and statistically analyzed. Six different seizure intensity categories were found to differ from each other based on differences in onset latencies, the pattern of occurrence during high or low doses of PTZ and the EEG pattern. These categories were quite different from those of Racine's scale. We suggest that Racine's scale is not adequate for the assessment of the seizure intensity of PTZ-induced seizures and that an alternative scale with the six proposed behavioral seizure categories is a more adequate description of PTZ-induced seizures.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Pentilenotetrazol , Convulsiones , Índice de Severidad de la Enfermedad , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Convulsiones/inducido químicamente , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 106(17): 7191-6, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19366663

RESUMEN

A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/terapia , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Convulsiones/genética , Convulsiones/terapia , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proliferación Celular , Epilepsia/metabolismo , Epilepsia/patología , Factor 2 de Crecimiento de Fibroblastos/genética , Terapia Genética , Vectores Genéticos/genética , Masculino , Neurogénesis , Ratas , Ratas Sprague-Dawley , Convulsiones/metabolismo , Convulsiones/patología , Resultado del Tratamiento
19.
Epilepsia ; 50(4): 832-48, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19220411

RESUMEN

PURPOSE: To analyze cellular mechanisms of limbic-seizure suppression, the response to pilocarpine-induced seizures was investigated in cortex and thalamus, comparing epilepsy-resistant rats Proechimys guyannensis with Wistar rats. METHODS: Fos immunoreactivity revealing neuronal activation, and degenerating neurons labeled by Fluoro-Jade B (FJB) histochemistry were analyzed on the first day after onset of seizures lasting 3 h. Subpopulations of gamma-aminobutyric acid (GABA)ergic cells were characterized with double Fos-parvalbumin immunohistochemistry. RESULTS: In both cortex and thalamus, degenerating neurons were much fewer in Proechimys than Wistar rats. Fos persisted at high levels at 24 h only in the Proechimys thalamus and cortex, especially in layer VI where corticothalamic neurons reside. In the parietal cortex, about 50% of parvalbumin-containing interneurons at 8 h, and 10-20% at 24 h, were Fos-positive in Wistar rats, but in Proechimys, Fos was expressed in almost all parvalbumin-containing interneurons at 8 h and dropped at 24 h. Fos positivity in cingulate cortex interneurons was similar in both species. In the Wistar rat thalamus, Fos was induced in medial and midline nuclei up to 8 h, when <30% of reticular nucleus cells were Fos-positive, and then decreased, with no relationship with cell loss, evaluated in Nissl-stained sections. In Proechimys, almost all reticular nucleus neurons were Fos-positive at 24 h. DISCUSSION: At variance with laboratory rats, pilocarpine-induced protracted seizures elicit in Proechimys limited neuronal death, and marked and long-lasting Fos induction in excitatory and inhibitory cortical and thalamic cell subsets. The findings implicate intrathalamic and intracortical regulation, and circuits linking thalamus and cortex in limbic seizure suppression leading to epilepsy resistance.


Asunto(s)
Corteza Cerebral/patología , Epilepsia/complicaciones , Epilepsia/patología , Degeneración Nerviosa/etiología , Neuronas/fisiología , Tálamo/patología , Análisis de Varianza , Animales , Recuento de Células/métodos , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/inducido químicamente , Fluoresceínas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Degeneración Nerviosa/metabolismo , Neuronas/clasificación , Proteínas Oncogénicas v-fos/metabolismo , Compuestos Orgánicos , Parvalbúminas/metabolismo , Pilocarpina , Ratas , Ratas Wistar , Factores de Tiempo
20.
Nat Med ; 14(12): 1377-83, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19029985

RESUMEN

The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately one percent of the world population, are not well understood. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1, encoded by Selplg) and leukocyte integrins alpha(4)beta(1) and alpha(L)beta(2). Inhibition of leukocyte-vascular interactions, either with blocking antibodies or by genetically interfering with PSGL-1 function in mice, markedly reduced seizures. Treatment with blocking antibodies after acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with the potential leukocyte involvement in epilepsy in humans, leukocytes were more abundant in brains of individuals with epilepsy than in controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.


Asunto(s)
Células Endoteliales/citología , Epilepsia/patología , Leucocitos/citología , Animales , Adhesión Celular , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Electroencefalografía , Células Endoteliales/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...