Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912319

RESUMEN

A key factor in the study of plant-microbes interactions is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analysing bacterial strains (isolated from three different compartments, i.e. rhizospheric soil, roots and stem/leaves) for phenotypic features such as antibiotic resistance, extracellular enzymatic activity, siderophore and indole 3-acetic acid production, as well as cross-antagonistic activities. Data obtained highlighted that bacteria from different plant compartments were characterized by specific antibiotic resistance phenotypes and antibiotic production, suggesting that the bacterial communities themselves could be responsible for structuring their own communities by the production of antimicrobial molecules selecting bacterial-adaptive phenotypes for plant tissue colonization.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis/fisiología , Bacterias/crecimiento & desarrollo , Echinacea/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología , Rizosfera , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Microbiana , Ácidos Indolacéticos/metabolismo , Microbiota/efectos de los fármacos , Suelo , Microbiología del Suelo , Especificidad de la Especie
2.
Sci Total Environ ; 622-623: 1509-1518, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054645

RESUMEN

Biological invasions are a global threat to biodiversity. Since the spread of invasive alien plants may have many impacts, an integrated approach, assessing effects across various ecosystem components, is needed for a correct understanding of the invasion process and its consequences. The nitrogen-fixing tree Robinia pseudoacacia (black locust) is a major invasive species worldwide and is used in forestry production. While its effects on plant communities and soils are well known, there have been few studies on soil fauna and microbes. We investigated the impacts of the tree on several ecosystem components, using a multi-trophic approach to combine evidence of soil chemical properties and soil microbial, nematode, microarthropod and plant communities. We sampled soil and vegetation in managed forests, comparing those dominated by black locust with native deciduous oak stands. We found qualitative and quantitative changes in all components analysed, such as the well-known soil nitrification and acidification in stands invaded by black locust. Bacterial richness was the only component favoured by the invasion. On the contrary, abundance and richness of microarthropods, richness of nematodes, and richness and diversity of plant communities decreased significantly in invaded stands. The invasion process caused a compositional shift in all studied biotic communities and in relationships between the different ecosystem components. We obtained clear insights into the effects of invasion of managed native forests by black locust. Our data confirms that the alien species transforms several ecosystem components, modifying the plant-soil community and affecting biodiversity at different levels. Correct management of this aggressive invader in temperate forests is urgently required.


Asunto(s)
Ecosistema , Robinia/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Animales , Artrópodos , Biodiversidad , Especies Introducidas , Nematodos , Plantas
3.
Sci Rep ; 7(1): 839, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404986

RESUMEN

Cold environments dominate Earth's biosphere, hosting complex microbial communities with the ability to thrive at low temperatures. However, the underlying molecular mechanisms and the metabolic pathways involved in bacterial cold-adaptation mechanisms are still not fully understood. Herein, we assessed the metabolic features of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125), a model organism for cold-adaptation, at both 4 °C and 15 °C, by integrating genomic and phenomic (high-throughput phenotyping) data and comparing the obtained results to the taxonomically related Antarctic bacterium Pseudoalteromonas sp. TB41 (PspTB41). Although the genome size of PspTB41 is considerably larger than PhTAC125, the higher number of genes did not reflect any higher metabolic versatility at 4 °C as compared to PhTAC125. Remarkably, protein S-thiolation regulated by glutathione and glutathionylspermidine appeared to be a new possible mechanism for cold adaptation in PhTAC125. More in general, this study represents an example of how 'multi-omic' information might potentially contribute in filling the gap between genotypic and phenotypic features related to cold-adaptation mechanisms in bacteria.


Asunto(s)
Aclimatación , Frío , Genoma Bacteriano , Pseudoalteromonas/metabolismo , Glutatión/análogos & derivados , Glutatión/metabolismo , Fenotipo , Pseudoalteromonas/genética , Espermidina/análogos & derivados , Espermidina/metabolismo
4.
Res Microbiol ; 165(8): 686-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25283726

RESUMEN

Recent findings have shown that antibiotic resistance is widespread in multiple environments and multicellular organisms, as plants, harboring rich and complex bacterial communities, could be hot spot for emergence of antibiotic resistances as a response to bioactive molecules production by members of the same community. Here, we investigated a panel of 137 bacterial isolates present in different organs of the medicinal plant Echinacea purpurea, aiming to evaluate if different plant organs harbor strains with different antibiotic resistance profiles, implying then the presence of different biological interactions in the communities inhabiting different plant organs. Data obtained showed a large antibiotic resistance variability among strains, which was strongly related to the different plant organs (26% of total variance, P < 0.0001). Interestingly this uneven antibiotic resistance pattern was present also when a single genus (Pseudomonas), ubiquitous in all organs, was analyzed and no correlation of antibiotic resistance pattern with genomic relatedness among strains was found. In conclusion, we speculate that antibiotic resistance patterns are tightly linked to the type of plant organ under investigation, suggesting the presence of differential forms of biological interaction in stem/leaves, roots and rhizosphere.


Asunto(s)
Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Echinacea/microbiología , Endófitos/efectos de los fármacos , Estructuras de las Plantas/microbiología , Bacterias/aislamiento & purificación , Endófitos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
5.
Sci Total Environ ; 497-498: 491-498, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25151267

RESUMEN

Acacia dealbata Link (Fabaceae) is one of the most invasive species in the Mediterranean ecosystems of Europe, Africa and America, where it has been proved to exert strong effects on soil and plant communities. In Italy A. dealbata has been largely used for ornamental and forestry purpose and is nowadays spreading in several areas. The present study was addressed to evaluate the impacts on soil chemical properties, soil microbial communities and understory plant communities and to assess the relationships among these compartments after the invasion of A. dealbata in a typical Mediterranean shrubland. Towards these aims, a soil and vegetation sampling was performed in Elba Island where A. dealbata is invading the sclerophyllous native vegetation. Three levels of invasion status were differentiated according to the gradient from invaded, to transitional and non-invaded vegetation. Quantitative and qualitative alterations of soil chemical properties and microbial communities (i.e. bacterial and fungal communities) and above-ground understory plant communities were found. In particular, the invaded soils had lower pH values than both the non-invaded and transitional ones. High differences were detected for both the total N and the inorganic fraction (NH4(+) and NO3(-)) contents, which showed the ranking: invaded>transitional>non-invaded soils. TOC and C/N ratio showed respectively higher and lower values in invaded than in non-invaded soils. Total plant covers, species richness and diversity in both the non-invaded and transitional subplots were higher than those in the invaded ones. The contribution of the nitrophilous species was significantly different among the three invasion statuses, with a strong increase going from native to transitional and invaded subplots. All these data confirm that A. dealbata modifies several compartments of the invaded ecosystems, from soil chemical properties to soil and plant microbial communities determining strong changes in the local ecosystem processes.


Asunto(s)
Acacia , Especies Introducidas , Microbiología del Suelo , África , Italia , Región Mediterránea , Suelo
6.
Int Microbiol ; 17(3): 165-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26419456

RESUMEN

In this work we analyzed the composition and structure of cultivable bacterial communities isolated from the stem/leaf and root compartments of two medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC.) Hell, grown in the same soil, as well as the bacterial community from their rhizospheric soils. Molecular PCR-based techniques were applied to cultivable bacteria isolated from the three compartments of the two plants. The results showed that the two plants and their respective compartments were characterized by different communities, indicating a low degree of strain sharing and a strong selective pressure within plant tissues. Pseudomonas was the most highly represented genus, together with Actinobacteria and Bacillus spp. The presence of distinct bacterial communities in different plant species and among compartments of the same plant species could account for the differences in the medicinal properties of the two plants.


Asunto(s)
Bacterias/aislamiento & purificación , Echinacea/microbiología , Plantas Medicinales/microbiología , Bacterias/clasificación , Bacterias/genética , Rizosfera , Microbiología del Suelo
7.
Sci Total Environ ; 425: 262-70, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22475220

RESUMEN

We performed a field trial to evaluate the response of different poplar clones to heavy metals. We found that poplar plants of the same clone, propagated by cuttings, had a marked variability of survival and growth in different zones of the field that were characterized by very similar physical-chemical prosperities. Since metal uptake and its accumulation by plants can be affected by soil microorganisms, we investigated soil microbial populations that were collected in proximity to the roots of large and small poplar plants. We used microbiological and molecular tools to ascertain whether bacterial strains or species were associated with large, or small poplars, and whether these were different from those present in the bulk (without plants) soil. We found that the culturable fraction of the bacteria differed in the three cases (bulk soil, small or large poplars). While some taxa were always present, two species (Chryseobacterium soldanellicola and Variovorax paradoxus) were only found in the soil where poplars (large or small) were growing, independently from the plant size. Bacterial strains of the genus Flavobacterium were prevalent in the soil with large poplar plants. The existence of different microbial populations in the bulk and in the poplar grown soils was confirmed by the DGGE profiles of the bacterial culturable fractions. Cluster analysis of the DGGE profiles highlighted the clear separation of the culturable fraction from the whole microbial community. The isolation and identification of poplar-associated bacterial strains from the culturable fraction of the microbial community provided the basis for further studies aimed at the combined use of plants and soil microorganisms in the remediation of heavy metal polluted soils.


Asunto(s)
Metales Pesados/farmacocinética , Populus/crecimiento & desarrollo , Populus/microbiología , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Betaproteobacteria/genética , Chryseobacterium/genética , Flavobacterium/genética , Raíces de Plantas/microbiología , Populus/metabolismo , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...