RESUMEN
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
RESUMEN
BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants demonstrate predilection for different regions of the respiratory tract. While saliva-based reverse transcription-polymerase chain reaction (RT-PCR) testing is a convenient, cost-effective alternative to nasopharyngeal swabs (NPS), few studies to date have investigated whether saliva sensitivity differs across variants of concern. METHODS: SARS-CoV-2 RT-PCR was performed on paired NPS and saliva specimens collected from individuals with acute coronavirus disease 2019 (COVID-19) symptoms or exposure to a COVID-19 household contact. Viral genome sequencing of NPS specimens and Los Angeles County surveillance data were used to determine the variant of infection. Saliva sensitivity was calculated using NPS-positive RT-PCR as the reference standard. Factors contributing to the likelihood of saliva SARS-CoV-2 RT-PCR positivity were evaluated with univariate and multivariable analyses. RESULTS: Between June 2020 and December 2022, 548 saliva samples paired with SARS-CoV-2 positive NPS samples were tested by RT-PCR. Overall, saliva sensitivity for SARS-CoV-2 detection was 61.7% (95% CI, 57.6%-65.7%). Sensitivity was highest with Delta infection (79.6%) compared to pre-Delta (58.5%) and Omicron (61.5%) (P = 0.003 and 0.01, respectively). Saliva sensitivity was higher in symptomatic individuals across all variants compared to asymptomatic cases [pre-Delta 80.6% vs 48.3% (P < 0.001), Delta 100% vs 72.5% (P = 0.03), Omicron 78.7% vs 51.2% (P < 0.001)]. Infection with Delta, symptoms, and high NPS viral load were independently associated with 2.99-, 3.45-, and 4.0-fold higher odds of SARS-CoV-2 detection by saliva-based RT-PCR (P = 0.004, <0.001, and <0.001), respectively. CONCLUSIONS: As new variants emerge, evaluating saliva-based testing approaches may be crucial to ensure effective virus detection.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , Saliva , Sensibilidad y Especificidad , Humanos , Saliva/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Masculino , Femenino , Adulto , Prueba de Ácido Nucleico para COVID-19/métodos , Persona de Mediana Edad , Nasofaringe/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Anciano , Adulto Joven , Adolescente , ARN Viral/análisis , ARN Viral/genética , ARN Viral/aislamiento & purificaciónRESUMEN
Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.
Asunto(s)
Charadriiformes , Virus de la Influenza A , Gripe Aviar , Filogenia , Virus Reordenados , Animales , Brasil , Gripe Aviar/virología , Gripe Aviar/epidemiología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Charadriiformes/virología , Genoma Viral , Aves/virologíaRESUMEN
Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.
Asunto(s)
Delfín Mular , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Florida/epidemiología , Neuraminidasa , Virus de la Influenza A/fisiología , AvesRESUMEN
BACKGROUND: Characterization of longitudinal SARS-CoV-2-specific antibody responses in children following infection and vaccination is needed to inform SARS-CoV-2 vaccine policy decisions for children, which may differ from adults. METHODS: We enrolled individuals at the time of SARS-CoV-2 infection or vaccination for longitudinal serological testing and compared SARS-CoV-2-spike-specific IgG and neutralization activity in children and adults stratified by infection and vaccination status using enzyme-linked immunosorbent and virus neutralization assays. RESULTS: Between June 2020 and December 2022, we collected sera from 669 participants aged 40 days to 55 years, including 330 unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection, 180 vaccinated SARS-CoV-2-naïve individuals, and 159 vaccinated previously infected individuals. Half (nâ =â 330, 49.3%) were children. SARS-CoV-2-specific IgG and neutralization activity in childrenâ <â 12 years old in response to infection persisted at higher levels than those of adults through at least 6 months (spike-specific IgG levels, 2.05 [95% CI: 1.4-3.1] times higher than adults; neutralizing activity, median 88.8 vs 75.2%, respectively, pâ =â .04). In addition, all pediatric participants had significantly higher IgG levels compared with adults at 6 months following infection or vaccination, regardless of prior infection status. Vaccine-induced SARS-CoV-2-specific IgG responses in previously infected individuals persisted at higher levels than those from infection alone at 6 months (median AUC, children 5-11 years old, 9115 vs 368; adolescents 3613 vs 475; adults 1956 vs 263, all pâ <â .001). CONCLUSIONS: These data demonstrate the robust and persistent immunologic response of SARS-CoV-2 vaccination in children and emphasize the benefit of vaccination after SARS-CoV-2 infection.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Niño , Preescolar , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales , Inmunoglobulina G , Inmunidad AdaptativaRESUMEN
BACKGROUND: The role of SARS-CoV-2 viral load in predicting contagiousness, disease severity, transmissibility, and clinical decision-making continues to be an area of great interest. However, most studies have been in adults and have evaluated SARS-CoV-2 loads using cycle thresholds (Ct) values, which are not standardized preventing consistent interpretation critical to understanding clinical impact and utility. Here, a quantitative SARS-CoV-2 reverse-transcription digital PCR (RT-dPCR) assay normalized to WHO International Units was applied to children at risk of severe disease diagnosed with COVID-19 at St. Jude Children's Research Hospital between March 28, 2020, and January 31, 2022. METHODS: Demographic and clinical information from children, adolescents, and young adults treated at St. Jude Children's Research Hospital were abstracted from medical records. Respiratory samples underwent SARS-CoV-2 RNA quantitation by RT-dPCR targeting N1 and N2 genes, with sequencing to determine the genetic lineage of infecting virus. RESULTS: Four hundred and sixty-two patients aged 0-24 years (median 11 years old) were included during the study period. Most patients were infected by the omicron variant (43.72%), followed by ancestral strain (22.29%), delta (13.20%), and alpha (2.16%). Viral load at presentation ranged from 2.49 to 9.14 log10 IU/mL, and higher viral RNA loads were associated with symptoms (OR 1.32; CI 95% 1.16-1.49) and respiratory disease (OR 1.23; CI 95% 1.07-1.41). Viral load did not differ by SARS-CoV-2 variant, vaccination status, age, or baseline diagnosis. CONCLUSIONS: SARS-CoV-2 RNA loads predict the presence of symptomatic and respiratory diseases. The use of standardized, quantitative methods is feasible, allows for replication, and comparisons across institutions, and has the potential to facilitate consensus quantitative thresholds for risk stratification and treatment.
Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Adulto Joven , Humanos , Adolescente , SARS-CoV-2/genética , ARN Viral/genética , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa , Carga Viral , Prueba de COVID-19RESUMEN
Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Humana/epidemiología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Animales Salvajes , Aves , Aves de Corral , Filogenia , MamíferosRESUMEN
Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.
RESUMEN
Wild aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). It is estimated that 100 million seabirds live in the Antarctic Peninsula and adjacent islands, regularly encountering migratory birds that use the islands to nest. Between 2010 and 2013, we collected samples from 865 seabirds in Elephant, King George and Livingston islands, around Antarctica Peninsula: chinstrap penguin (n = 143); gentoo penguin (n = 208); Adelie penguin (n = 46); brown skua (n = 90); Cape petrel (n = 115) and southern giant petrel (n = 263). Serum (n = 673) samples were analysed by competitive ELISA and swabs (n = 614) were tested by one step real-time RT-PCR for avian influenza virus (AIV). Sera from 30 chinstrap penguins, 76 brown skuas and a single Adelie penguin were seropositive for AIV. Thirteen swab samples were AIV positive by RT-PCR, and complete genome sequences of H6N8 AIVs isolated from brown skua and chinstrap penguin in 2011 were obtained. Phylogenetic analyses indicated that all gene segments of the H6N8 viruses were closely related to Argentinian and Chilean AIVs. The prevalence with which we identified evidence for AIVs infection in various Antarctic seabirds suggest viral circulation in Antarctic avifauna and interspecies viral transmission in the sub-Antarctic region.
Asunto(s)
Charadriiformes , Virus de la Influenza A , Gripe Aviar , Spheniscidae , Animales , Regiones Antárticas , Gripe Aviar/epidemiología , Filogenia , Animales Salvajes , Virus de la Influenza A/genética , ChileRESUMEN
Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunación , Carga Viral , Adulto , Femenino , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/genética , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Estudios Prospectivos , ARN Viral/análisis , ARN Viral/genética , ADN Polimerasa Dirigida por ARN , SARS-CoV-2/genética , Vacunación/estadística & datos numéricos , Estados Unidos/epidemiología , Carga Viral/efectos de los fármacos , Carga Viral/genética , Carga Viral/estadística & datos numéricos , Secuenciación Completa del Genoma , Infecciones Asintomáticas/epidemiología , Infecciones Asintomáticas/terapia , Factores de Tiempo , Aceptación de la Atención de Salud/estadística & datos numéricos , Vacunas de ARNmRESUMEN
The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Evolución Biológica , Vacunas contra la COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevención & control , Variantes Farmacogenómicas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología , VirulenciaRESUMEN
The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.
Asunto(s)
COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Cricetinae , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga ViralRESUMEN
The efficacy of coronavirus disease 2019 (COVID-19) vaccines administered after COVID-19-specific monoclonal antibody is unknown, and "antibody interference" might hinder immune responses leading to vaccine failure. In an institutional review board-approved prospective study, we found that an individual who received mRNA COVID-19 vaccination <40 days after COVID-19-specific monoclonal antibody therapy for symptomatic COVID-19 had similar postvaccine antibody responses to SARS-CoV-2 receptor binding domain (RBD) for 4 important SARS-CoV-2 variants (B.1, B.1.1.7, B.1.351, and P.1) as other participants who were also vaccinated following COVID-19. Vaccination against COVID-19 shortly after COVID-19-specific monoclonal antibody can boost and expand antibody protection, questioning the need to delay vaccination in this setting. TRIAL REGISTRATION: The St. Jude Tracking of Viral and Host Factors Associated with COVID-19 study; NCT04362995; https://clinicaltrials.gov/ct2/show/NCT04362995.
RESUMEN
The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga ViralRESUMEN
To optimize the public health response to coronavirus disease 2019 (COVID-19), we must first understand the antibody response to individual proteins on the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the antibody's cross reactivity to other coronaviruses. Using a panel of 37 convalescent COVID-19 human serum samples, we showed that the magnitude and specificity of responses varied across individuals, independent of their reactivity to seasonal human coronaviruses (HCoVs). These data suggest that COVID-19 vaccines will elicit primary humoral immune responses in naïve individuals and variable responses in those previously exposed to SARS-CoV-2. Unlike the limited cross-coronavirus reactivities in humans, serum samples from 96 dogs and 10 cats showed SARS-CoV-2 protein-specific responses focused on non-S1 proteins. The correlation of this response with those to other coronaviruses suggests that the antibodies are cross-reactive and generated to endemic viruses within these hosts, which must be considered in seroepidemiologic studies. We conclude that substantial variation in antibody generation against coronavirus proteins will influence interpretations of serologic data in the clinical and veterinary settings.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismoRESUMEN
Influenza A/H5N1 has circulated in Asia since 2003 and is now enzootic in many countries in that region. In Cambodia, the virus has circulated since 2004 and has intermittently infected humans. During this period, we have noted differences in the rate of infections in humans, potentially associated with the circulation of different viral clades. In particular, a reassortant clade 1.1.2 virus emerged in early 2013 and was associated with a dramatic increase in infections of humans (34 cases) until it was replaced by a clade 2.3.2.1c virus in early 2014. In contrast, only one infection of a human has been reported in the 6 years since the clade 2.3.2.1c virus became the dominant circulating virus. We selected three viruses to represent the main viral clades that have circulated in Cambodia (clade 1.1.2, clade 1.1.2 reassortant, and clade 2.3.2.1c), and we conducted experiments to assess the virulence and transmissibility of these viruses in avian (chicken, duck) and mammalian (ferret) models. Our results suggest that the clade 2.3.2.1c virus is more "avian-like," with high virulence in both ducks and chickens, but there is no evidence of aerosol transmission of the virus from ducks to ferrets. In contrast, the two clade 1 viruses were less virulent in experimentally infected and contact ducks. However, evidence of chicken-to-ferret aerosol transmission was observed for both clade 1 viruses. The transmission experiments provide insights into clade-level differences that might explain the variation in A/H5N1 infections of humans observed in Cambodia and other settings.
Asunto(s)
Pollos/virología , Patos/virología , Hurones/virología , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Animales , Cambodia/epidemiología , Humanos , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Gripe Humana/epidemiología , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Filogenia , Especificidad de la Especie , VirulenciaRESUMEN
Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined. To determine the fitness impact of the I38T/F/M substitutions, we generated recombinant A/California/04/2009 (H1N1)pdm09, A/Texas/71/2017 (H3N2), and B/Brisbane/60/2008 viruses with I38T/F/M and examined drug susceptibility in vitro, enzymatic properties, replication efficiency, and transmissibility in ferrets. Influenza viruses with I38T/F/M substitutions exhibited reduced baloxavir susceptibility, with 38T causing the greatest reduction. The I38T/F/M substitutions impaired PA endonuclease activity as compared to that of wild-type (I38-WT) PA. However, only 38T/F A(H3N2) substitutions had a negative effect on polymerase complex activity. The 38T/F substitutions decreased replication in cells among all viruses, whereas 38M had minimal impact. Despite variable fitness consequences in vitro, all 38T/M viruses disseminated to naive ferrets by contact and airborne transmission, while 38F-containing A(H3N2) and B viruses failed to transmit via the airborne route. Reversion of 38T/F/M to I38-WT was rare among influenza A viruses in this study, suggesting stable retention of 38T/F/M genotypes during these transmission events. BXM reduced susceptibility-associated mutations had variable effects on in vitro fitness of influenza A and B viruses, but the ability of these viruses to transmit in vivo indicates a risk of their spreading from BXM-treated individuals.