Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 205: 102119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246703

RESUMEN

Unilateral Vestibular Neurectomy (UVN) induces a postural syndrome whose compensation over time is underpinned by multimodal sensory substitution processes. However, at a chronic stage of compensation, UVN rats exhibit an enduring postural asymmetry expressed by an increase in the body weight on the ipsilesional paws. Given the anatomo-functional links between the vestibular nuclei and the primary somatosensory cortex (S1), we explored the interplay of vestibular and somatosensory cortical inputs following acute and chronic UVN. We determined whether the enduring imbalance in tactilo-plantar inputs impacts response properties of S1 cortical neurons and organizational features of somatotopic maps. We performed electrophysiological mapping of the hindpaw cutaneous representations in S1, immediately and one month after UVN. In parallel, we assessed the posturo-locomotor imbalance during the compensation process. UVN immediately induces an expansion of the cortical neuron cutaneous receptive fields (RFs) leading to a partial dedifferentiation of somatotopic maps. This effect was demonstrated for the ventral skin surface representations and was greater on the contralesional hindpaw for which the neuronal threshold to skin pressure strongly decreased. The RF enlargement was amplified for the representation of the ipsilesional hindpaw in relation to persistent postural asymmetries, but was transitory for the contralesional one. Our study shows, for the first time, that vestibular inputs exert a modulatory influence on S1 neuron's cutaneous responses. The lesion-induced cortical malleability highlights the influence of vestibular inputs on tactile processing related to postural control.


Asunto(s)
Corteza Somatosensorial , Núcleos Vestibulares , Animales , Desnervación , Neuronas , Equilibrio Postural , Ratas
2.
J Neurophysiol ; 125(3): 805-808, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502938

RESUMEN

Many studies have compared active and passive touch to understand how motor action shapes touch perception. Current views emphasize the difficulties in making such a comparison and promote investigating how motor strategies enable the filtering out of sensory inputs to reshape touch perception. Cybulska-Klosowicz et al. (Cybulska-Klosowicz A, Tremblay F, Jiang W, Bourgeon S, Meftah E-M, Chapman CE. J Neurophysiol 123: 1072-1089, 2020) suggest that primary somatosensory (S1) cortical remodeling of digit representation occurs during active touch. Here, alternative interpretations are proposed, and the relevance of studying multidigit scanning is emphasized.


Asunto(s)
Percepción del Tacto , Tacto , Animales , Haplorrinos , Corteza Somatosensorial , Vigilia
3.
Brain Struct Funct ; 222(6): 2727-2742, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28161726

RESUMEN

Path integration is a navigation strategy that requires animals to integrate self-movements during exploration to determine their position in space. The medial entorhinal cortex (MEC) has been suggested to play a pivotal role in this process. Grid cells, head-direction cells, border cells as well as speed cells within the MEC collectively provide a dynamic representation of the animal position in space based on the integration of self-movements. All these cells are strongly modulated by theta oscillations, thus suggesting that theta rhythmicity in the MEC may be essential for integrating and coordinating self-movement information during navigation. In this study, we first show that excitotoxic MEC lesions, but not dorsal hippocampal lesions, impair the ability of rats to estimate linear distances based on self-movement information. Next, we report similar deficits following medial septum inactivation, which strongly impairs theta oscillations in the entorhinal-hippocampal circuits. Taken together, these findings demonstrate a major role of the MEC and MS in estimating distances to be traveled, and point to theta oscillations within the MEC as a neural mechanism responsible for the integration of information generated by linear self-displacements.


Asunto(s)
Conducta Animal , Corteza Entorrinal/fisiopatología , Hipotálamo/fisiopatología , Locomoción , Percepción Espacial , Navegación Espacial , Procesamiento Espacial , Ritmo Teta , Animales , Conducta Animal/efectos de los fármacos , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/patología , Agonistas de Aminoácidos Excitadores/toxicidad , Agonistas de Receptores de GABA-A/toxicidad , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Ácido Iboténico/toxicidad , Locomoción/efectos de los fármacos , Masculino , N-Metilaspartato/toxicidad , Ratas Long-Evans , Percepción Espacial/efectos de los fármacos , Navegación Espacial/efectos de los fármacos , Procesamiento Espacial/efectos de los fármacos , Ritmo Teta/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...