Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043796

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , Peptidoglicano , Peptidil Transferasas , Proteínas Bacterianas/química , Resistencia betalactámica , beta-Lactamas/farmacología , Catálisis , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferasas/química , Peptidil Transferasas/genética
2.
PLoS Pathog ; 19(6): e1011015, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384772

RESUMEN

Clostridioides difficile is responsible for substantial morbidity and mortality in antibiotically-treated, hospitalised, elderly patients, in which toxin production correlates with diarrhoeal disease. While the function of these toxins has been studied in detail, the contribution of other factors, including the paracrystalline surface layer (S-layer), to disease is less well understood. Here, we highlight the essentiality of the S-layer in vivo by reporting the recovery of S-layer variants, following infection with the S-layer-null strain, FM2.5. These variants carry either correction of the original point mutation, or sequence modifications which restored the reading frame, and translation of slpA. Selection of these variant clones was rapid in vivo, and independent of toxin production, with up to 90% of the recovered C. difficile population encoding modified slpA sequence within 24 h post infection. Two variants, subsequently named FM2.5varA and FM2.5varB, were selected for study in greater detail. Structural determination of SlpA from FM2.5varB indicated an alteration in the orientation of protein domains, resulting in a reorganisation of the lattice assembly, and changes in interacting interfaces, which might alter function. Interestingly, variant FM2.5varB displayed an attenuated, FM2.5-like phenotype in vivo compared to FM2.5varA, which caused disease severity more comparable to that of R20291. Comparative RNA sequencing (RNA-Seq) analysis of in vitro grown isolates revealed large changes in gene expression between R20291 and FM2.5. Downregulation of tcdA/tcdB and several genes associated with sporulation and cell wall integrity may account for the reported attenuated phenotype of FM2.5 in vivo. RNA-seq data correlated well with disease severity with the more virulent variant, FM2.5varA, showing s similar profile of gene expression to R20291 in vitro, while the attenuated FM2.5varB showed downregulation of many of the same virulence associated traits as FM2.5. Cumulatively, these data add to a growing body of evidence that the S-layer contributes to C. difficile pathogenesis and disease severity.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Clostridioides , Clostridioides difficile/genética , Pared Celular , Células Clonales
3.
Microbiol Spectr ; : e0389422, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790200

RESUMEN

Therapeutic bacteriophages (phages) are being considered as alternatives in the fight against Clostridioides difficile infections. To be efficient, phages should have a wide host range, buthe lack of knowledge about the cell receptor used by C. difficile phages hampers the rational design of phage cocktails. Recent reports suggested that the C. difficile surface layer protein A (SlpA) is an important phage receptor, but available data are still limited. Here, using the epidemic R20291 strain and its FM2.5 mutant derivative lacking a functional S-layer, we show that the absence of SlpA renders cells completely resistant to infection by ϕCD38-2, ϕCD111, and ϕCD146, which normally infect the parental strain. Complementation with 12 different S-layer cassette types (SLCTs) expressed from a plasmid revealed that SLCT-6 also allowed infection by ϕCD111 and SLCT-11 enabled infection by ϕCD38-2 and ϕCD146. Of note, the expression of SLCT-1, -6, -8, -9, -10, or -12 conferred susceptibility to infection by 5 myophages that normally do not infect the R20291 strain. Also, deletion of the D2 domain within the low-molecular-weight fragment of SlpA was found to abolish infection by ϕCD38-2 and ϕCD146 but not ϕCD111. Altogether, our data suggest that many phages use SlpA as their receptor and, most importantly, that both siphophages and myophages target SlpA despite major differences in their tail structures. Our study therefore represents an important step in understanding the interactions between C. difficile and its phages. IMPORTANCE Phage therapy represents an interesting alternative to treat Clostridioides difficile infections because, contrary to antibiotics, most phages are highly species specific, thereby sparing the beneficial gut microbes that protect from infection. However, currently available phages against C. difficile have a narrow host range and target members from only one or a few PCR ribotypes. Without a clear comprehension of the factors that define host specificity, and in particular the host receptor recognized by phages, it is hard to develop therapeutic cocktails in a rational manner. In our study, we provide clear and unambiguous experimental evidence that SlpA is a common receptor used by many siphophages and myophages. Although work is still needed to define how a particular phage receptor-binding protein binds to a specific SLCT, the identification of SlpA as a common receptor is a major keystone that will facilitate the rational design of therapeutic phage cocktails against clinically important strains.

4.
Virulence ; 14(1): 2150452, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36419222

RESUMEN

Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Virulencia , Clostridioides difficile/genética , Clostridioides , Factores de Virulencia , Diarrea , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
Microbiol Spectr ; 10(2): e0236121, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377223

RESUMEN

Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.


Asunto(s)
Bacteriófagos , Clostridioides difficile , Bacteriófagos/genética , Pared Celular/metabolismo , Clostridioides , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/análisis , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Polisacáridos Bacterianos/metabolismo
6.
Nat Commun ; 13(1): 970, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217634

RESUMEN

Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.


Asunto(s)
Clostridioides difficile , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Clostridioides difficile/genética
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131082

RESUMEN

The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium.


Asunto(s)
Clostridioides difficile/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , Regiones no Traducidas 5'/genética , Clostridioides difficile/genética , Ambiente , Etanolamina/metabolismo , Genoma Bacteriano , Ligandos , Chaperonas Moleculares/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Operón/genética , Regiones Promotoras Genéticas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sitio de Iniciación de la Transcripción , Terminación de la Transcripción Genética , Transcriptoma/genética
8.
Anaerobe ; 70: 102379, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33940167

RESUMEN

BACKGROUND: Sporulation is a complex cell differentiation programme shared by many members of the Firmicutes, the end result of which is a highly resistant, metabolically inert spore that can survive harsh environmental insults. Clostridioides difficile spores are essential for transmission of disease and are also required for recurrent infection. However, the molecular basis of sporulation is poorly understood, despite parallels with the well-studied Bacillus subtilis system. The spore envelope consists of multiple protective layers, one of which is a specialised layer of peptidoglycan, called the cortex, that is essential for the resistant properties of the spore. We set out to identify the enzymes required for synthesis of cortex peptidoglycan in C. difficile. METHODS: Bioinformatic analysis of the C. difficile genome to identify putative homologues of Bacillus subtilis spoVD was combined with directed mutagenesis and microscopy to identify and characterise cortex-specific PBP activity. RESULTS: Deletion of CDR20291_2544 (SpoVDCd) abrogated spore formation and this phenotype was completely restored by complementation in cis. Analysis of SpoVDCd revealed a three domain structure, consisting of dimerization, transpeptidase and PASTA domains, very similar to B. subtilis SpoVD. Complementation with SpoVDCd domain mutants demonstrated that the PASTA domain was dispensable for formation of morphologically normal spores. SpoVDCd was also seen to localise to the developing spore by super-resolution confocal microscopy. CONCLUSIONS: We have identified and characterised a cortex specific PBP in C. difficile. This is the first characterisation of a cortex-specific PBP in C. difficile and begins the process of unravelling cortex biogenesis in this important pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Clostridioides difficile/química , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Calor , Proteínas de Unión a las Penicilinas/genética , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo
9.
Sci Rep ; 10(1): 14089, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839524

RESUMEN

Surface layers (S-layers) are protective protein coats which form around all archaea and most bacterial cells. Clostridium difficile is a Gram-positive bacterium with an S-layer covering its peptidoglycan cell wall. The S-layer in C. difficile is constructed mainly of S-layer protein A (SlpA), which is a key virulence factor and an absolute requirement for disease. S-layer biogenesis is a complex multi-step process, disruption of which has severe consequences for the bacterium. We examined the subcellular localization of SlpA secretion and S-layer growth; observing formation of S-layer at specific sites that coincide with cell wall synthesis, while the secretion of SlpA from the cell is relatively delocalized. We conclude that this delocalized secretion of SlpA leads to a pool of precursor in the cell wall which is available to repair openings in the S-layer formed during cell growth or following damage.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Clostridioides difficile/patogenicidad , Glicoproteínas de Membrana/metabolismo , Cisteína Endopeptidasas/metabolismo , Humanos , Peptidoglicano/metabolismo , Transporte de Proteínas/fisiología
10.
mSphere ; 5(4)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611700

RESUMEN

Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh "reducing" conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.


Asunto(s)
Clostridium botulinum/fisiología , Clostridium/fisiología , Esporas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Cisteína/metabolismo , Escherichia coli/genética
11.
Crit Care Med ; 46(8): e805-e810, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29782355

RESUMEN

OBJECTIVES: The vascular endothelium is a major target of sepsis-induced events, and endothelial activation accounts for much of the pathology of sepsis. Urinary tract infections and pneumonia caused by Escherichia coli are among of the most common infections causing sepsis in both community and hospital settings. Currently, there are no approved drugs on the market to treat the underlying pathophysiology of sepsis. The aim of this study is to elucidate the molecular mechanism by which E. coli induces endothelial injury as a result of attachment. DESIGN: Laboratory research using a hemodynamic perfusion ex vivo model. SETTING: Research Laboratories of Royal College of Surgeons in Ireland and Beaumont Hospital. PATIENTS: Ex vivo human vascular endothelial cells. INTERVENTIONS: Addition of αVß3 antagonist, cilengitide. MEASUREMENTS AND MAIN RESULTS: Clinical strains of E. coli isolated from patients with sepsis bound to sheared human endothelial cells under static and hemodynamic shear conditions. Binding was dependent on E. coli cell membrane protein outer membrane protein A attaching directly to endothelial cell integrin αVß3. Attachment resulted in disturbances in endothelial barrier integrity, as determined by loss of tight junction protein staining, permeability changes, and ultimately cell death by apoptosis. Using a low concentration of the αVß3 antagonist cilengitide or using a strain deficient in outer membrane protein A resulted in a significant reduction in endothelial dysfunction following infection. CONCLUSIONS: Inhibition of E. coli binding to endothelial cell αVß3 by cilengitide prevents endothelial dysfunction and may, therefore, present as a novel early therapeutic for the treatment of sepsis.


Asunto(s)
Células Endoteliales/microbiología , Escherichia coli/crecimiento & desarrollo , Integrina alfaVbeta3/antagonistas & inhibidores , Sepsis/microbiología , Venenos de Serpiente/farmacología , Permeabilidad Capilar , Relación Dosis-Respuesta a Droga , Humanos
12.
Sci Transl Med ; 9(406)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878013

RESUMEN

There is a medical need for antibacterial agents that do not damage the resident gut microbiota or promote the spread of antibiotic resistance. We recently described a prototypic precision bactericidal agent, Av-CD291.2, which selectively kills specific Clostridium difficile strains and prevents them from colonizing mice. We have since selected two Av-CD291.2-resistant mutants that have a surface (S)-layer-null phenotype due to distinct point mutations in the slpA gene. Using newly identified bacteriophage receptor binding proteins for targeting, we constructed a panel of Avidocin-CDs that kills diverse C. difficile isolates in an S-layer sequence-dependent manner. In addition to bacteriophage receptor recognition, characterization of the mutants also uncovered important roles for S-layer protein A (SlpA) in sporulation, resistance to innate immunity effectors, and toxin production. Surprisingly, S-layer-null mutants were found to persist in the hamster gut despite a complete attenuation of virulence. These findings suggest antimicrobials targeting virulence factors dispensable for fitness in the host force pathogens to trade virulence for viability and would have clear clinical advantages should resistance emerge. Given their exquisite specificity for the pathogen, Avidocin-CDs have substantial therapeutic potential for the treatment and prevention of C. difficile infections.


Asunto(s)
Antiinfecciosos/farmacología , Clostridioides difficile/patogenicidad , Glicoproteínas de Membrana/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Bacteriocinas/farmacología , Clostridioides difficile/efectos de los fármacos , Recuento de Colonia Microbiana , Cricetinae , Farmacorresistencia Bacteriana/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Inmunidad Innata/efectos de los fármacos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Viabilidad Microbiana/efectos de los fármacos , Mutación/genética , Fenotipo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/fisiología , Toxinas Biológicas/metabolismo , Virulencia/efectos de los fármacos
13.
Microb Biotechnol ; 10(1): 76-90, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27311697

RESUMEN

Clostridium difficile infection (CDI) is a challenging threat to human health. Infections occur after disruption of the normal microbiota, most commonly through the use of antibiotics. Current treatment for CDI largely relies on the broad-spectrum antibiotics vancomycin and metronidazole that further disrupt the microbiota resulting in frequent recurrence, highlighting the need for C. difficile-specific antimicrobials. The cell surface of C. difficile represents a promising target for the development of new drugs. C. difficile possesses a highly deacetylated peptidoglycan cell wall containing unique secondary cell wall polymers. Bound to the cell wall is an essential S-layer, formed of SlpA and decorated with an additional 28 related proteins. In addition to the S-layer, many other cell surface proteins have been identified, including several with roles in host colonization. This review aims to summarize our current understanding of these different C. difficile cell surface components and their viability as therapeutic targets.


Asunto(s)
Proteínas Bacterianas/análisis , Pared Celular/química , Clostridioides difficile/química , Glicoproteínas de Membrana/análisis , Peptidoglicano/análisis
14.
Anaerobe ; 42: 1-5, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27377776

RESUMEN

Clostridium difficile infection has increased in incidence and severity over the past decade, and poses a unique threat to human health. However, genetic manipulation of C. difficile remains in its infancy and the bacterium remains relatively poorly characterised. Low-efficiency conjugation is currently the only available method for transfer of plasmid DNA into C. difficile. This is practically limiting and has slowed progress in understanding this important pathogen. Conjugation efficiency varies widely between strains, with important clinically relevant strains such as R20291 being particularly refractory to plasmid transfer. Here we present an optimised conjugation method in which the recipient C. difficile is heat treated prior to conjugation. This significantly improves conjugation efficiency in all C. difficile strains tested including R20291. Conjugation efficiency was also affected by the choice of media on which conjugations were performed, with standard BHI media giving most transconjugant recovery. Using our optimised method greatly increased the ease with which the chromosome of R20291 could be precisely manipulated by homologous recombination. Our method improves on current conjugation protocols and will help speed genetic manipulation of strains otherwise difficult to work with.


Asunto(s)
Cromosomas Bacterianos/metabolismo , Clostridioides difficile/genética , Conjugación Genética , Recombinación Homóloga , Plásmidos/metabolismo , Cromosomas Bacterianos/química , Clostridioides difficile/aislamiento & purificación , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Medios de Cultivo/farmacología , Calor , Humanos , Plásmidos/química , Ribotipificación , Transformación Bacteriana/efectos de los fármacos
15.
Food Microbiol ; 59: 205-12, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27375261

RESUMEN

Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.


Asunto(s)
Proteínas Bacterianas/química , Clostridium botulinum/química , Clostridium/química , Esporas Bacterianas/química , Electroforesis en Gel de Poliacrilamida , Homología de Secuencia de Aminoácido , Esporas Bacterianas/metabolismo , Esporas Bacterianas/ultraestructura , Espectrometría de Masas en Tándem
16.
Sci Rep ; 6: 23463, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996606

RESUMEN

The uses of fluorescent reporters derived from green fluorescent protein have proved invaluable for the visualisation of biological processes in bacteria grown under aerobic conditions. However, their requirement for oxygen has limited their application in obligate anaerobes such as Clostridium difficile. Fluorescent proteins derived from Light, Oxygen or Voltage sensing (LOV) domains have been shown to bridge this limitation, but their utility as translational fusions to monitor protein expression and localisation in a strict anaerobic bacterium has not been reported. Here we demonstrate the utility of phiLOV in three species of Clostridium and its application as a marker of real-time protein translation and dynamics through genetic fusion with the cell division protein, FtsZ. Time lapse microscopy of dividing cells suggests that Z ring assembly arises through the extension of the FtsZ arc starting from one point on the circumference. Furthermore, through incorporation of phiLOV into the flagella subunit, FliC, we show the potential of bacterial LOV-based fusion proteins to be successfully exported to the extracellular environment.


Asunto(s)
Técnicas Biosensibles/métodos , Clostridioides difficile/genética , Imagen Molecular/métodos , Imagen Óptica/métodos , Biosíntesis de Proteínas , Proteínas Bacterianas/biosíntesis , Clostridioides difficile/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Transporte de Proteínas
17.
Mol Microbiol ; 96(3): 596-608, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25649385

RESUMEN

Gram-positive surface proteins can be covalently or non-covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non-identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock-down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram-positive bacteria.


Asunto(s)
Secuencias de Aminoácidos , Pared Celular/metabolismo , Clostridioides difficile/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos Bacterianos/metabolismo , Técnicas de Silenciamiento del Gen , Unión Proteica , Secuencias Repetitivas de Aminoácido
18.
mBio ; 6(2): e02383, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25714712

RESUMEN

UNLABELLED: Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. IMPORTANCE: Clostridium difficile is a common cause of potentially fatal intestinal infections in hospital patients, particularly those who have been treated with antibiotics. Our knowledge of this bacterium has been hampered by a lack of tools for dissecting the organism. We have developed a method to study the function of every gene in the bacterium simultaneously. Using this tool, we have identified a set of 404 genes that are required for growth of the bacteria in the laboratory. C. difficile also produces a highly resistant spore that can survive in the environment for a long time and is a requirement for transmission of the bacteria between patients. We have applied our genetic tool to identify all of the genes required for production of a spore. All of these genes represent attractive targets for new drugs to treat infection.


Asunto(s)
Clostridioides difficile/crecimiento & desarrollo , Genes Bacterianos , Genes Esenciales , Pruebas Genéticas/métodos , Ensayos Analíticos de Alto Rendimiento , Mutagénesis Insercional/métodos , Esporas Bacterianas/crecimiento & desarrollo , Clostridioides difficile/genética , Elementos Transponibles de ADN , Humanos , Esporas Bacterianas/genética
19.
BMC Genomics ; 15: 160, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24568651

RESUMEN

BACKGROUND: Clostridium difficile is an anaerobic, Gram-positive bacterium that can reside as a commensal within the intestinal microbiota of healthy individuals or cause life-threatening antibiotic-associated diarrhea in immunocompromised hosts. C. difficile can also form highly resistant spores that are excreted facilitating host-to-host transmission. The C. difficile spo0A gene encodes a highly conserved transcriptional regulator of sporulation that is required for relapsing disease and transmission in mice. RESULTS: Here we describe a genome-wide approach using a combined transcriptomic and proteomic analysis to identify Spo0A regulated genes. Our results validate Spo0A as a positive regulator of putative and novel sporulation genes as well as components of the mature spore proteome. We also show that Spo0A regulates a number of virulence-associated factors such as flagella and metabolic pathways including glucose fermentation leading to butyrate production. CONCLUSIONS: The C. difficile spo0A gene is a global transcriptional regulator that controls diverse sporulation, virulence and metabolic phenotypes coordinating pathogen adaptation to a wide range of host interactions. Additionally, the rich breadth of functional data allowed us to significantly update the annotation of the C. difficile 630 reference genome which will facilitate basic and applied research on this emerging pathogen.


Asunto(s)
Clostridioides difficile/fisiología , Clostridioides difficile/patogenicidad , Redes y Vías Metabólicas , Proteoma , Transcriptoma , Butiratos/metabolismo , Clostridioides difficile/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mutación , Proteómica , Esporas Bacterianas , Virulencia/genética
20.
Nat Rev Microbiol ; 12(3): 211-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24509785

RESUMEN

The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions.


Asunto(s)
Bacterias/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Pared Celular/metabolismo , Variación Genética , Humanos , Glicoproteínas de Membrana/genética , Modelos Biológicos , Familia de Multigenes/fisiología , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA