Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428527

RESUMEN

Amniotic fluid (AF) provides critical biological and physical support for the developing fetus. While AF is an excellent source of progenitor cells with regenerative properties, recent investigations indicate that cell-free AF (cfAF), which consists of its soluble components and extracellular vesicles, can also stimulate regenerative and reparative activities. This review summarizes published fundamental, translational, and clinical investigations into the biological activity and potential use of cfAF as a therapeutic agent. Recurring themes emerge from these studies, which indicate that cfAF can confer immunomodulatory, anti-inflammatory, and pro-growth characteristics to the target cells/tissue with which they come into contact. Another common observation is that cfAF seems to promote a return of cells/tissue to a homeostatic resting state when applied to a model of cell stress or disease. The precise mechanisms through which these effects are mediated have not been entirely defined, but it is clear that cfAF can safely and effectively treat cutaneous wounds and perhaps orthopedic degenerative conditions. Additional applications are currently being investigated, but require further study to dissect the fundamental mechanisms through which its regenerative effects are mediated. By doing so, rational design can be used to fully unlock its potential in the biotechnology lab and in the clinic.

2.
Biomedicines ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36140291

RESUMEN

Myofibroblast activation is a cellular response elicited by a variety of physiological or pathological insults whereby cells initiate a coordinated response intended to eradicate the insult and then revert back to a basal state. However, an underlying theme in various disease states is persistent myofibroblast activation that fails to resolve. Based on multiple observations, we hypothesized that the secreted factors harvested from co-culturing amniotic stem cells might mimic the anti-inflammatory state that cell-free amniotic fluid (AF) elicits. We optimized an amnion epithelial and amniotic fluid cell co-culture system, and tested this hypothesis in the context of myofibroblast activation. However, we discovered that co-cultured amniotic cell conditioned media (coACCM) and AF have opposing effects on myofibroblast activation: coACCM activates the epithelial-mesenchymal transition (EMT) and stimulates gene expression patterns associated with myofibroblast activation, while AF does the opposite. Intriguingly, extracellular vesicles (EVs) purified from AF are necessary and sufficient to activate EMT and inflammatory gene expression patterns, while the EV-depleted AF potently represses these responses. In summary, these data indicate that coACCM stimulates myofibroblast activation, while AF represses it. We interpret these findings to suggest that coACCM, AF, and fractionated AF represent unique biologics that elicit different cellular responses that are correlated with a wide variety of pathological states, and therefore could have broad utility in the clinic and the lab.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...